上海交通大学
博士后研究工作报告

过程控制解析设计方法研究

张卫东

工作完成日期 1996年6月—1996年8月
报告提交日期 1998年4月

上海交通大学（上海）
1998年4月
内容摘要

目前在整个世界范围内都非常重视控制理论的应用研究，而过程控制则是控制理论应用的一个主要领域。虽然在最优控制和鲁棒控制方面已经取得许多成果，但是与过程控制密切相关的频域时滞系统控制问题仍然没有得到完全解决。

本文将 H_2, H_{∞} 最优控制理论和鲁棒控制理论的设计方法引入到过程控制中，研究了控制系统设计问题。论文从典型过程控制对象的动态特性出发，建立了最优性能问题的数学描述，通过将时滞系统控制问题转化为非时滞系统控制问题，解析地得到了控制器。这种方法的优点是容易理解和使用，在线整定方便，能够充分利用控制信息，综合优化系统的鲁棒性能以及超调、上升时间等时域性能指标，满足工业生产的需要。

论文关于过程控制系统设计的创造性成果有：
1. 解决了自衡对象、积分对象和不稳定对象的 PID 控制器解析设计问题。
2. 解决了自衡对象、积分对象和不稳定对象 Smith 预估器解析设计问题。
3. 定义了鲁棒度的概念，提供了方便有效的鲁棒整定方法。
4. 建立了最优性能指标与传统性能指标之间的联系，提供了时域性能定量估计方法。
5. 证明了 Smith 预估器、Dahlin 控制器、推断控制和预测控制在一定条件下的等价关系。
6. 讨论了数字控制系统产生振铃的本质原因，提出了实现离散控制系统的新方法。

关键词：过程控制，最优控制，鲁棒控制，时滞系统，解析设计，定量性能估计。
目录

第一章 过程控制概述
1.1 过程控制理论的发展 ... 1
1.2 过程控制系统的概念 ... 3
1.3 过程控制理论的几个问题 6
1.4 本文的主要内容 ... 7
1.5 小结 .. 9

第二章 经典分析方法
2.1 过程动态特性 .. 10
2.2 纯滞后的作用 .. 12
2.3 时域性能指标 .. 15
2.4 频域响应方法 .. 19
2.5 小结 .. 22

第三章 鲁棒控制理论基础
3.1 范数与空间 .. 24
3.2 控制要求 ... 26
3.3 控制器参数化 .. 30
3.4 鲁棒性分析的重要结论 33
3.5 小结 .. 35

第四章 自适应对象 H_{∞} 控制
4.1 传统 PID 控制器的整定 38
4.2 H_{∞}PID 控制器设计 41
4.3 H_{∞}PID 控制器与 Smith 预估器的关系 44
8.2 不稳定对象的 H_∞ PID 控制 .. 111
8.3 不稳定对象的 H_2 PID 控制 .. 115
8.4 小结 .. 120

第九章 数字控制系统设计 .. 121
9.1 修正 z 变换 .. 121
9.2 单变量 Dahlin 控制器设计 .. 124
9.3 一阶控制对象的振铃 .. 125
9.4 二阶控制对象的振铃 .. 130
9.5 小结 .. 134

第十章 结论与展望 .. 135

参考文献 .. 138
致谢 .. 153
博士生期间发表的学术论文 .. 154
博士后期间发表的学术论文 .. 155
个人简历 .. 158
永久通信地址 .. 159
第一章 过程控制概述

在有关工业应用的领域内，把内部相互连接的单元设备组合的整体以及所发生的物理或化学变化定义为过程。过程控制主要是针对过程中的物理量（如温度、压力、流量、液位、成分、物性或其组合等）研究其控制问题，它是控制理论中发展最早、最重要的分支之一。过程控制的研究内容主要包括两个方面，即过程动态特性和过程控制系统设计。本文的目的是要介绍一种能推广于过程控制系统分析与设计的较完整的理论，它既要够抓住根本问题，又要能应用到实际问题中，并为有兴趣的读者提供深入的研究方向。

1.1 过程控制理论的发展

过程控制理论的发展经历了漫长而曲折的过程。伯德、奈魁斯特、齐格勒和尼科尔斯等许多学者的开拓性工作作为过程控制理论的发展铺平了道路。他们提出的频域分析和设计理论不但具有较强的工程和物理意义，而且能针对实际工程要求提出一些实际的解决方案，所以一直到今天还在被广泛使用。同时也可以看到，这一理论的出现首先不是由于严格的具有完整体系的一套数学，而是由于工程和物理的推动，数学在这里只是作为论证与推演控制思想的工具，而控制本身的结论及其表述也远未数学化，还存在许多问题有待阐明，例如：

（1）从数学的角度来看，控制系统的设汁目标是什么？
（2）控制系统设计又是依据什么准则进行优化的？

六十年代兴起的基于状态空间方法的现代控制理论澄清了一些人们在早期还不熟悉的问题，特别是系统结构方面的问题。由于充分利用在这方面的积累起来的知识，较好地解决了诸如系统稳定性和不可控不可观这类问题。这些重要的理论贡献成为过程控制一直沿用的理论根据。由于这种方法使人们第一次能够比较容易地解决线性多变量问题，并提供了一种将线性定常系统中的结果推广到其他系统的方便的手段，人们对其在过程控制中的应用寄予了很高的期望。遗憾的是，在实践中遇到了较大的理论、经济和技术上
的困难（Horowitz and Shaked, 1975; Foss, 1973; Kestenbaum et al., 1976）。现代控制理论研究的是比较纯化的数学问题，没有直接的工程背景，因而工程与物理的洞察力在这里难以起到作用，于是对熟悉工程与物理的工程师来说，至今总是不乐于采用现代控制理论解决过程控制问题。另外这种理论对过程控制的某些关键问题也缺乏基本的阐述，譬如控制对象的不确定性。

不考虑使用的数值方法，一个控制器应当根据控制对象的动态行为来设计。用准确的数学模型来描述系统的动态特性是不可能的，因为总是有不确定性，因此希望控制器能对控制对象的不确定性不敏感，也就是具有鲁棒性。从七十年代末开始鲁棒性成为控制理论研究的一个重要方向，并由此建立了鲁棒控制的理论体系。鲁棒控制理论是根据实际控制对象的特点提出来的，人们寄希望于它能改变现代控制理论在过程控制应用中受冷落的局面。然而，尽管鲁棒控制理论发展至今已有二十多年，它在过程控制中的应用仍然屈指可数。关于鲁棒控制理论在工业领域应用的一个阶段性的统计可参见图1.1，图中数据来自Dorato et al.（1993）。由于鲁棒控制理论并不是专门针对领域特指对象而发展的，它与过程控制的结合总有一段距离。它的设计过程也比较繁琐，得到的控制器阶次很高，在实际中难以使用。此外这种设计方法一般要求预先知道控制对象的不确定性范围，而在实际中由于技术或经济上的原因获得这些数据可能非常困难。

图1.1-1 鲁棒控制理论在不同领域的应用
就在鲁棒控制理论兴起的同时，在过程控制领域里发展了一类新的算法，如模型算法控制（MAC）（Richalet et al., 1978）和动态矩阵控制（DMC）（Culter and Ramaker, 1979）等，成功地解决了复杂过程控制中的一些问题。这些算法经过以后的发展形成了所谓的预测控制理论（????）。Garcia and Morari(1982)接触到这些算法后敏锐地意识到在它们之中内在地隐含着某些现代鲁棒控制的特点，于是他们以这类基本的算法为立足点，吸取新的理论成就，形成一个完整的内模控制理论框架(Morari and Zafiriou, 1989)。由于这两类相互联系的方法不但具有坚实的理论基础，而且提供了简单而有效的设计手段，从而使整个过程控制理论的发展向前迈进了一大步。这两类设计方法的发展还给予我们这样一个启示，即针对典型地过程控制对象进行设计，可以得到具有合适阶次的控制器，这可能是解决最优控制理论和鲁棒控制理论在过程控制中应用的一个重要途径，也是本文的出发点。

1.2 过程控制系统的结构

控制系统由控制对象，或者说被控过程，和控制器组成的。在控制对象和控制器之间要有执行器来执行控制器的决策，同时还要有传感器为控制器提供控制对象的信息。控制器可以是人，这时就是手动控制系统。如果控制器是电子或机械的自动装置，就组成了自动控制系统。图1.2描述了一个造纸过程自动控制系统，其目的是要生产具有恒定定量的纸张。所谓定量即是每平方米纸张的重量。系统的控制对象是造纸机，造纸机的输入是一定浓度的纸浆，输出是纸张。控制器由计算机实现，执行器是调节纸浆流量的调节阀，传感器是测量纸张定量的定量仪。系统的给定值，又称参考输入，代表了期望的系统工作点，在这里是指要求的纸张定量。来自定量仪的测量值与给定值比较后产生一个偏差，这个偏差在控制器的作用下驱动调节阀，通过调节纸浆的流量来保证纸张定量的恒定。

大多数的过程控制系统设计问题与上述造纸过程控制设计问题是类似的。一般来说，过程控制系统设计过程可以归纳为以下两个步骤:

(1) 分析一控制系统设计的目标是什么？控制对象有着什么样的动态特性?

(2) 设计——怎样设计控制器才能满足要求?

这个过程可以用图1.3来表示。
控制系统的目标就是通过控制某些输入使系统输出达到所要求的形式。最常用的目标有两个:

(1) 调节问题—使系统输出尽量维持在某个平衡点附近。
(2) 伺服问题—使系统输出尽量好地跟踪参考输入的变化。

当我们讨论调节问题时总是假定参考输入为常数，或者更简单地为零;而在讨论伺服问题时则假定除参考输入的变化外没有其它外部干扰。过程控制系统的研究的主要是前一问题。在教科书及一般文献中, 经常把过程控制系统归结为所谓的定值系统, 就是指这类系统必须具有良好的抗干扰能力，以保证即使存在着外部干扰，系统输出也能在一定时间后以一定的精度稳定在要求的给定值附近。但是这并不是说过程控制中不存在参考输入的变化，而是参考输入的变化不很频繁。事实上在工业过程中从参考输入变化到系统重新
稳定运行之前生产的产品常常是不能用的。例如在造纸生产过程中，某一阶段生产纸浆的定量为70g/m²，而另一阶段则为90g/m²，若给定值从70g/m²调整到90g/m²的过程中生产的纸浆都是废品。

为了设计控制系统，还需要定量地知道对象输入如何影响对象输出，或者说建立描述控制对象动态特性的数学模型。模型不但是设计控制系统的依据，而且还可用于计算机仿真，帮助设计人员调整控制策略和控制器参数。获得代表一个控制对象的切合实际而又有意义的模型可能会遇到一系列的困难。实际中获得的往往是简化的数学模型，它是由理想的数学模型通过线性化和合并处理等方法得到的。实际的过程中总是存在未知的干扰和无法描述的动态特性，因而存在着模型无法描述的不确定性。与其他控制系统相比，不确定性问题的控制中显得格外突出，这不仅是由于技术上的原因，还因为经济的原因。在过程控制系统设计中必须给予这个问题足够的重视，才能使设计结果能够成功地用于实际系统。

某些控制系统会发生变化，其影响就可以立即从对象输出观测到。过程控制对象有所不同。例如在造纸生产过程中。实际的情况是每当浆液的流量变化时，总是要经过一段时间然后才能观测到纸张定量的变化，这段时间称之为纯滞后或死时，含有纯滞后的对象称为滞时对象。过程控制理论处理的主要是时滞对象。

由此可以得到过程控制系统的两个主要特点：
(1) 过程控制系统通常呈定值调节系统。
(2) 典型的过程控制对象含有纯滞后。

一个控制系统的性能依赖于系统的各个环节。这其中最重要的可能是控制器了。控制器的设计问题是控制系统设计的核心。过程控制中有两种控制器设计方法。一种是常规的基于经验的方法，设计者根据经验选择控制器（通常是PID控制器），安装好控制装置后，再调整控制器的参数。另一种方法是基于模型的方法，根据控制对象的模型设计控制器，通过计算机仿真和现场调试确定控制器参数。这两种方法基于模型的，这种方法的最大优点在于它的严谨，因为即使是在工程领域严谨也会使问题更加明确以至得到更加满意的解决。

在过程控制实践中很少会使用固定的控制器，这一方面是由于控制对象的不确定性，另一方面是由于系统工作点的漂移或阶段性变化，通常采用的是具有固定结构和可调参数的控制器，通过调节这些参数就可以满足控
制系统的静态或动态要求。

过程控制系统设计是个复杂的实际问题，仅仅采用数学工具或者仅仅采用实验方法，都难以有效地解决过程控制中出现的所有问题。在过去的几十年中计算机技术得到了迅速发展，出现了许多功能强大的软件包，给控制系统设计带来很大方便。因此，把研究重点置于数学工具和计算机仿真的基础上并结合实验，将是发展现代过程控制理论的可行的途径。在过程控制中采用计算机仿真 的优势在于对运算速度要求不高，很少有数值稳定性问题。

1.3 过程控制理论的几个问题

过程控制理论处理的主要对象是时滞过程。由于时滞的复杂特性和理论工具的缺乏，使得过程控制理论的研究比较困难。迄今为止，在过程控制中采用的研究方法主要还是经验方法，这些方法只利用了系统动态在内的部分信息，无法满足对控制品质进一步优化的要求。因此，能否采用现代控制理论中的最优或次最优设计方法发展过程控制理论就成为摆在人们面前的问题。由此引出以下问题：

问题 1：是否可以采用最优设计方法解析地设计过程控制器？

关于解析设计方法的研究无论在理论上还是在实践上都具有重要的意义。从理论上讲，解析设计是最优控制的结果，意味着能够得到更好的控制效果；就实践而言，解析设计意味着设计者可以不用推导直接使用设计结果，从而极大地简化了设计过程。

现代控制理论未能广泛地用于过程控制在一定程度上是由于现代控制理论和过程控制理论之间的差异，这种差异不但表现为分析手段的不同，更重要的是表现在对控制系统性能描述的不同上。譬如，在过程控制中经常用超调、上升时间和调节时间来描述控制要求并衡量系统的性能，但是这些指标却很难制成现代控制理论便于接受的数学形式。建立起最优控制理论和传统性能指标间的联系，这不仅是出于应用的需要，而且是个理论问题。因此我们非常关心：

问题 2：最优设计方法能否定量地估计系统的时域响应？

实际的物理过程有着固定的结构，这就对整个控制系统的性能施加了一个约束，某些性能的改善无法通过改进控制器也就是改进控制系统来达
到，而必须修改控制对象本身，这就自然地引出如下问题：

问题 3：最优设计方法还能对传统方法作出多大的改进？

如果新的方法不能对系统性能作出很大改进，或者不能提供更加方便有效的整定手段，那么这种新方法的意义就非常有限了。

过程控制对象总是存在明显的不确定性，除非将控制器设计的非常保守，否则很难将生产设备的磨损和生产条件的波动引入的不稳定性考虑进去，一个解决这个问题的途径就是发展简单而有效的方法根据实际情况调节系统的鲁棒性。这可以归结为：

问题 4：如何方便地调节系统的鲁棒性？

针对以上问题将最优控制理论、鲁棒控制理论和过程控制理论结合起来，发展精确和定量的过程控制理论是本文的主要研究方向，采用的研究手段是基于输入输出的频域方法。

1.4 本文的主要内容

过程控制的目的是确保系统稳定性，抑制外部干扰的影响和优化系统的性能，它对控制器的要求是简单有效，使用方便，这决定了 PID 控制器，Smith 预估器和 Dahlin 控制器在过程控制中占有重要地位，因而它们也成为了本文的主要研究内容。全文的总体安排是这样的：第二章和第三章是预备知识，第四章到第六章是自衡对象控制器设计，第七章是积分对象控制器设计，第八章是不稳定对象控制器设计。

第二章介绍过程控制对象动态特性的分类与经典控制理论的分析设计方法。在过程控制中，经典的时域和频域分析设计方法应用的相当广泛，介绍这些方法不但有助于我们深入理解新的方法，而且可以帮助我们建立起新的方法与传统方法之间的联系。

第三章介绍了鲁棒控制理论的一些基本概念，包括范数的定义，控制器参数的化和控制要求的提出，解释了鲁棒稳定性和鲁棒性能分析的重要结论。同时还介绍了控制对象动态特性的分类，并在经典控制理论的基础上定义了系统性能衡量指标。

第四章在 H_{∞} 控制理论的基础上，针对一阶或二阶惯性加纯滞后控制对象讨论了 PID 控制器的解析设计问题。主要思想是采用有理函数逼近控制对象中的纯滞后，再根据 H_{∞} 最优性能指标进行设计。新的 PID 控制器有
一个可调参数，该参数与系统性能和鲁棒性有着直接的关系，可以方便地用于调节系统性能与鲁棒性的折衷。

与 H_∞ 方法相对应的一种方法是 H_2 方法，第五章从 H_2 控制理论出发解析地得到了一种类似的 PID 控制器。由这两种 PID 控制器与 Smith 预估器的联系可以得到这样一个结论，即 PID 控制器也可用于具有较大纯滞后对象的控制。H_∞ 和 H_2 方法得到的次最优控制器具有类似的特点。从系统分析的角度来看，H_∞ 控制器较优越，但是从进一步的研究来看，基于 H_2 控制理论的方法会导致更完美的结果。

第六章讨论一般自衡对象的 Smith 预估器解析设计问题。在过程控制中，由于纯滞后的影响使得连续域控制器的解析设计非常困难，通常是采用有理逼近的办法来处理。本章在严格处理纯滞后项的前提下，从 H_2 控制理论出发解决了这个问题。进一步的研究表明，本章得到的 Smith 预估器，任一定条件下与推理控制和预测控制都是等价的。同样的方法还被推广到了具有反向响应过程的控制中。

本文的第七章和第八章是非常富有特色的两章，因为它们研究了两类特殊对象的控制问题。这些问题在已有的教科书和专著中基本没有讨论。

第七章对积分对象控制问题进行了深入研究。在工业实际中经常遇到一种特殊对象，故称它为积分对象，对这类对象 Smith 预估器无法使用，使用特殊方法设计的 PID 控制器也只能得到较差的性能。这一章首先讨论了 PID 控制器和 Smith 预估器的解析设计问题，指出了传统控制结构用于积分对象控制的局限，然后提出一种修正的 Smith 预估器，它通过干扰解耦使系统的性能得到极大的改善。

对自衡对象已经发展了许多有效的设计方法。遗憾的是这些方法不能够直接用于不稳定对象的控制。由于纯滞后和右半平面极点的存在，使得不稳定对象的镇定和控制非常困难。第八章发展了几种设计方法，可以有效地用于不稳定对象的控制，这些方法基本上保持了前面方法的优点。

实际控制系统大部分是通过计算机来实现的。计算机本身的特性决定了它只能处理数字信号，这就要求发展相应的离散域分析和设计方法。第七章对这个问题进行了研究，重点主要放在控制器的设计和实现上。

在本文中我们探讨了控制器的解析设计问题，这里提出的所有方法都具有以下的优点：首先，鲁棒控制器的设计问题被赋予一个清晰的理论，并通过解析方法得到了简单的设计公式。其次，建立起了最优性能指标与传统性
能指标的联系，设计人员能够定量估计控制系统的时域性能，如超调和上升时间等。再次，与以往的鲁棒控制器不同，新的控制器的设计与调整不依赖于准确的不确定性界。设计者可以在设计和使用过程中方便地调节由系统产生的时域响应的形状和系统的鲁棒性。

1.5 小结

本章首先回顾了过程控制理论的发展，然后以造纸过程自动控制系统为例介绍了过程控制的基本概念、系统组成及其特点，最后指出了过程控制理论研究存在的某些问题，并探讨了解决这些问题的可能途径。

第二章 经典分析方法

本章和下一章是最基本的。设计控制系统之前首先要了解对控制对象的动态特性，或者说建立控制对象的数学模型。为此我们讨论了过程控制对象动态特性并介绍了相关的有理逼近技术。在介绍新的理论之前，回顾一下经典控制理论的时域和频域分析方法并做一些深入的探讨是有益的。这些方法在过程控制中一直被广泛地使用，它们不但能够提供工程和物理的洞察力，而且有助于我们深入理解新的理论。

2.1 过程动态特性

控制系统设计的重要依据是控制对象的数学模型。数学模型是描述系统输入输出及内部各变量之间关系的数学表达式。过程控制中采用的一般是基于传递函数的输入输出模型。

过程控制的具体对象可能是生产过程中的各种装置或设备，例如换热器、反应器、精馏塔和造纸机等等，它们内部所进行的物理和化学反应也各不相同，然而从控制的观点来看它们在本质上有许多相似之处。几乎所有的过程控制对象都可以用线性时不变模型来描述，表示为有理传递函数加纯滞后后的形式。这些对象可以分为三类：自衡对象、积分对象和不稳定对象（McMillan, 1983; Moore, 1985）。

有些控制对象当原有的物质能量平衡关系遭到破坏后，能够自动稳定在新的水平上，这种特性称为自平衡，具有自平衡能力的对象称为自衡对象。自衡对象可以用下面的模型表示：

\[
\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1) \cdots (\tau_n s + 1)}e^{-\theta s} \quad (2.1-1)
\]

其中 \(K\) 是静态增益，\(\theta\) 是纯滞后，\(\tau_i, i = 1, 2, \ldots, n\) 表示过程时间常数。在过程控制实践中使用的更普遍的则是下面的一阶模型

\[
\frac{K}{\tau s + 1}e^{-\theta s} \quad (2.1-2)
\]

10
也有一些控制对象当原有的物质能量平衡关系遭到破坏后，过程输出将以固定的速度一直变化下去，而不会自动地在新的水平上恢复平衡，这种对象称为积分对象。一般的积分对象可以用下式表示：

$$\frac{1}{T_s (\tau_i + 1) (\tau_n + 1) \cdots (\tau_n + 1)} e^{-\theta t}$$ \hspace{1cm} (2.1-3)$$

其中 θ 是纯滞后，T_s 表示过程积分常数，$\tau_i, i = 1, 2, \ldots, n$ 表示过程时间常数。简化的一阶模型为
另外一些控制对象当原有的物质能量平衡关系遭到破坏后，过程输出在很短的时间里就会发生很大的变化，也不会自动地在新的水平上恢复平衡，这种对象称为不稳定对象，可以用下面的传递函数表示：
\[
\frac{1}{Ts^e^{-\theta s}}
\]
(2.1-4)

其中 \(K \) 是静态增益，\(\theta \) 是纯滞后，\(\tau_i, i = 0, 1, \ldots, n \) 表示过程时间常数。简化的一阶模型为
\[
\frac{K}{(Ts - 1)}e^{-\theta s}
\]
(2.1-5)

2.2 纯滞后环的有理逼近

时滞系统处理的首要困难在于：滞后表现为一个无理传递函数，是无限维的。而目前提出的大多数的控制方法都是基于有理函数理论的，只能处理有限维的控制对象，因此在设计控制器之前，讨论一下滞后环的有理逼近是必要的，因为在后面的设计过程中，我们还要借助于滞后的有理逼近。

我们知道纯滞后可以用如下的极限来表示：
\[
e^{-\theta s} = \lim_{{s}\to{\infty}} \left(\frac{1}{1 + \theta s} \right) \]
(2.2-1)
也就是说，纯滞后有无穷多个极点，这使控制系统的分析与设计变的非常困难。一个自然的想法就是用有理函数来近似纯滞后 $e^{-\theta s}$。上式给出了一种有理逼近方法，除此之外还可以用 Taylor 展开近似：

$$ e^{-\theta s} \approx \frac{1}{1 + \theta s + \frac{\theta^2 s^2}{2!} + \cdots + \frac{\theta^n s^n}{n!}} $$

$$ \approx 1 - \theta s + \frac{\theta^2 s^2}{2!} + \cdots + (-1)^n \frac{\theta^n s^n}{n!} \quad (2.2-2) $$

或者采用效果更好的 Pade 近似。设 n 和 v 是正整数，n/v 阶 Pade 近似可以表示为 (Saff and Varga, 1977b)

$$ e^{-\theta s} \approx \frac{P_{nv}(\theta s)}{Q_{nv}(\theta s)} \quad (2.2-3) $$

其中

$$ P_{nv}(\theta s) = \sum_{j=0}^{v} \frac{(n + v - j)!n!}{(n + v)!j!(n - j)!} (-\theta s)^j $$

$$ Q_{nv}(\theta s) = \sum_{j=0}^{v} \frac{(n + v - j)!v!}{(n + v)!j!(n - j)!} (-\theta s)^j $$

(2.2-4)

对 Pade 近似的稳定性有如下的判定定理：

定理 2.2-1 (Martinez, 1977) 如果 $n \geq v - 2$，那么 n/v 阶 Pade 近似是稳定的。

容易证明以下推论：

推论 2.2-2 全通 Pade 近似 ($n = v$) 和低通 Pade 近似 ($n = v - 1$) 是稳定的。

推论 2.2-3 全通 Pade 近似的所有零点都在右半平面，所有极点都在左半平面。

实际中使用较多的是全通 Pade 近似，全通 Pade 近似与惯性环节近似和 Taylor 展开相比有两个本质的优点：

1. 全通 Pade 近似的精度比相同阶次的惯性环节近似和 Taylor 展开的精度高。
2. 全通 Pade 近似保持了纯滞后后的幅值特性，只是相位有所不同（图 2.2-1）。

尽管有理近似的方法可以任意地逼近纯滞后，但是在用于系统稳定性
分析时却有一定的局限性，高阶的有理近似会使问题变得非常复杂，而且不一定能保证结果的正确性。

图2.2.2 简单的控制系统

为了说明这个问题，现在举一个简单的例子。假设有图2.2.2所示的控制系统，它的特征方程为

\[1 + \frac{1}{s} e^{-\tau} = 0 \]

或

\[1 + e^{\alpha} = 0 \]

容易知道该系统是稳定的，利用Taylor展开逼近纯滞后项可以得到不同的根：

\[1 + s = 0 \quad \text{根为} \quad s = -1 \]
\[1 + s + s^2 = 0 \quad \text{根为} \quad s = -0.5 \pm 0.8660 \]
\[1 + s + s^2 + \frac{s^3}{2} = 0 \quad \text{根为} \quad s = -1.544, -0.228 \pm j1.11532 \]

根据以上方程判断系统应是稳定的，但是方程
\[1 + \frac{a}{2} + \frac{a^2}{3!} + \frac{a^3}{4!} + \frac{a^4}{5!} = 0 \]

却有两个右半平面的根。

虽然用有理逼近的方法分析系统的稳定性有一定的局限，但是采用适当的方法后却可以用它来设计控制器，并且可以得到满意的结果。事实上，采用有理逼近特别是 Padé 近似的设计方法一直没有被抛弃过 (Johnson, 1963; Stahl and Hippe, 1987; Seborg et al., 1989)，而且在没有找到更好处理纯滞后后的数学方法之前它也不会被抛弃。

2.3 时域性能指标

系统的响应不仅依赖于它的模型而且还依赖于初始条件和输入信号。为了分析方便，一般规定控制系统的初始状态为零状态，也就是说在输入信号加于系统之后系统是相对静止的，即系统输出及其各阶导数相对于平衡工作点的增量为零。实际系统的输入可能是难以确定的。为了比较系统性能的优劣需要有一个对各种控制系统的性能进行比较的基础，即测试信号，通常是对系统输入信号作一些典型化处理。选取测试信号必须考虑如下原则；

（1）测试信号的形式应反映系统工作的大部分实际情况。

（2）测试信号的数学表达形式要尽可能简单，便于分析。

常用的时域测试信号有以下几种 (图 2.3-1)；

脉冲信号：实际脉冲信号的表达式为

\[
 r(t) = \begin{cases}
 1 & 0 < t < A \\
 A & t < 0, t > A
 \end{cases}
\]

式中 A 为常数，表示脉冲宽度，脉冲面积等于 1。当 A 趋于零时称为单位脉冲信号，记为 δ(t)。

阶跃信号：阶跃信号的数学表达式为

\[
 r(t) = \begin{cases}
 0 & t < 0 \\
 A & t \geq 0
 \end{cases}
\]

式中 A 为常数，A = 1 时的阶跃信号称为单位阶跃信号，记为 1(t)。

斜坡信号：斜坡信号的数学表达式为

\[
 r(t) = \begin{cases}
 0 & t < 0 \\
 A & t \geq 0
 \end{cases}
\]

\cdot 15 \cdot
式中 A 为常数。$A = 1$ 时的斜坡信号称为单位斜坡信号，记为 $t \cdot 1(t)$。

![图2.3-1 单位反馈控制系统](image)

典型测试信号对控制系统设计也具有重要意义。设计一个对所有类型的输入都能工作得很好的控制器在物理上是不可能的，因此找出最常见的、主要的输入类型是非常重要的。过程控制系统的输入有两类：给定值和干扰。它们可以近似为脉冲信号或阶跃信号，由于脉冲信号可以通过两个相反方向的阶跃信号的叠加获得，所以控制器的设计主要是针对阶跃输入信号进行的。对实际问题而言阶跃输入信号已经是足够苛刻的选择了。

回顾控制理论的发展历史可以看到，控制理论的发展与系统性能指标的描述是密切相关的。

经典控制理论将控制系统的时域响应从时间顺序上划分为两个过程：动态过程和静态过程。动态过程又称过渡过程，是指从输入信号加入系统开始到进入稳态之前的这段过程。静态过程又称稳态过程，是指时间趋于无穷时系统的输出状态。比较起来人们对过渡过程关注的更多些。这一方面是因为实际对象对动态响应的幅度和时间有一定限制，而静态响应较难调节。另一方面是因为实际对象总是不断受到外界干扰的影响，系统经常处于动态过程中。通常用给定值单位阶跃响应的特性来衡量系统性能的优劣，并以此定义时域动态性能指标，如图 2.3-2 所示。具体说明如下：

超调量 σ%：是指在响应过程中超出稳态值的最大偏移量与稳态值之比，常用百分比表示。工程上对超调量没有统一的要求，一般对稳定的控制系统希望系统超调量不要超过 50%。

上升时间 t_r：一般把单位阶跃响应曲线从稳态值的 10% 上升到 90% 所需的时间定义为上升时间。对欠阻尼系统通常把从零上升到第一次达到稳态值所需要的时间定义为上升时间。

调节时间 t_{reg}：是指单位阶跃响应曲线进入允许误差带（一般取稳态值的 5% 为允许误差带）并再不超出这个范围所用的最短时间。

前面介绍过，过程控制系统的主目的是抑制干扰的影响，使系统输出尽量保持在给定值附近。那么怎样衡量系统干扰抑制能力的强弱呢？传统
控制理论没有提供相应的手段。虽然给系统定值响应与干扰响应有着内在的联系，但是它不能给出定量的估计。为此，本文定义两个与系统干扰响应有关的动态性能指标，如图 2.3.3 所示。

图 2.3.3 单位阶跃干扰响应

摄动量 η：是指在控制对象输入端阶跃干扰作用下系统输出的最大摄动量与干扰幅值之比，用百分比表示。

恢复时间 t_r：是指单位阶跃干扰响应曲线进入允许误差带（一般取稳态...
值的5%为允许误差带，并不再超出这个范围所用的最短时间。

系统的稳态性能主要是指稳态误差。所谓稳态误差是指系统趋于无穷小时系统响应的希望值与实际值之差，它反映了控制系统的准确性。显然系统稳态误差应当逐渐消失，或者说系统应当具有渐近跟踪特性。那么，什么样的系统满足渐近跟踪要求，又如何检验它呢？下面我们来研究这个问题。

![图2.3-1 单位反馈控制系统](image)

考虑图2.3-1所示的基本反馈控制系统，其中的回路传递函数 $G(s)$ 代表了控制对象和控制器的动态特性。当系统稳定时，根据终值定理，系统稳态误差为

$$
l_{\infty}(t) = \lim_{s \to 0} \frac{sG(s)}{1 + G(s)}
$$

(2.3-1)

显然，系统稳态误差不仅与输入信号的形式有关，而且与系统回路传递函数的结构有关。首先给出系统类型的定义。

定义2.3-1 设 $G(s)$ 是系统回路传递函数，$G(s)$ 在原点的极点数目是 m，则称此系统是 m 型的。

现在研究输入信号形式和系统类型对系统稳态误差的影响。这里只考虑常见的阶跃信号和斜坡信号。不失一般性，可以假设信号是单位的。当输入信号是单位阶跃信号时有

$$
l_{\infty}(t) = \lim_{s \to 0} \frac{1}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)}
$$

(2.3-2)

这时0型系统稳态误差为一常数，高于0型系统的稳态误差为零。当输入信号是单位斜坡信号时有

$$
l_{\infty}(t) = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}
$$

(2.3-3)

这时0型系统稳态误差为无穷大，1型系统稳态误差为一常数，高于1型系统的稳态误差为零。

以上介绍的单项性能指标都很直观，在工程实践中被广泛采用，但是很困难将它们表述为相应的数学形式，这阻碍了从更一般的意义上讨论控制器
的设计问题，因此人们又发展了一类综合性能指标，通过对系统误差某种形式的积分来衡量系统性能，常用的积分有以下几种：

绝对误差积分：$$IAE = \int_{0}^{\infty} |e(t)| dt$$

平方误差积分：$$ISE = \int_{0}^{\infty} e^2(t) dt$$

时间与绝对误差乘积积分：$$ITAE = \int_{0}^{\infty} t |e(t)| dt$$

上述各式中的$e(t)$表示系统误差。由于通过 ISE 性能指标可以将控制系统设计问题转化为比较纯化的数学问题并通过完美的结果，因此这种性能指标得到了广泛的应用。现代控制理论中的最优设计方法就是在 ISE 性能指标的基础上发展起来的。在频域中也将 ISE 性能指标称为 H_2 性能指标。

最优设计方法的目的就是要寻找一个控制器使性能指标最小化。H_2 最优控制器最小化了系统误差的总体幅度。那么能不能使最大的系统误差最小化呢？这可以归结为下面的性能指标:

H_{∞} 性能指标：$$\sup_{t} \| e \|_\infty$$

H_{∞} 控制理论就是从这一性能指标出发发展起来的。

H_2 性能指标和 H_{∞} 性能指标的一个局限是它们不能保证系统具有渐近跟踪特性。它们的另一个局限在于与直观的性能指标间没有直接的联系，设计者不知道最优或次最优控制器能否产生满足工程要求的响应。这个问题导致的一个直接的结果是，在已建立起的技术与新的理论之间存在一条裂痕，使依赖于工程和物理洞察力进行设计的工程师难以接受这种方法。

2.4 频域响应方法

频域响应方法是一种图解分析法，它依据系统的频率特性对系统的性能和稳定性进行研究，并能较方便地分析系统参数对系统性能和稳定性的关系，从而提出改进系统的方向。考虑图 2.3-1 所示的基本反馈控制系统。整个系统的闭环传递函数为

$$T(s) = \frac{G(s)}{1 + G(s)}$$

系统频率特性为

$$T(j\omega) = \frac{G(j\omega)}{1 + G(j\omega)}$$

```
或者用幅值和相位表示为
\[ T(j\omega) = |T(j\omega)| / T(j\omega) \quad (2.4-2) \]

同时域响应方法类似，频域响应方法也定义了一系列的性能指标。它们在很大程度上能够表明系统响应过程的品质。

图 2.4-2 典型的幅频特性曲线

谐振峰值 \( T_p \) 是指幅频特性 \( |T(j\omega)| \) 的最大值，它反映了系统的相对稳定性。\( T_p \) 越大，系统阶跃响应的超调量也越大，这意味着系统的平稳性较差。传统设计方法中通常希望 \( T_p \) 在 1.1-1.5 之间。

谐振频率 \( \omega_r \) 谐振峰值出现的频率称为谐振频率。

频带宽度 \( BW \) 是指幅频特性 \( |T(j\omega)| \) 的幅值衰减到 0.707 倍所对应的频率，它反映了系统动态响应的速度。\( BW \) 越大则较高频率的信号容易通过，系统的响应速度快。\( BW \) 还与系统的鲁棒性密切相关，一般来讲，\( BW \) 越小系统鲁棒性越强。

频域响应方法的显著特点是可以根据系统的开环频率特性去分析闭环系统的性能和稳定性。闭环系统的稳定性可以通过开环传递函数的 Nyquist 图来判定。以图 2.4-1 所示的系统为例，开环传递函数 \( G(j\omega) \) 的 Nyquist 图是可以根据 \( G(\omega) \) 和 \( \angle G(j\omega) \) 确定的向量在复平面上移动时所绘出的矢端轨迹。

定理 2.4-1 (Nyquist 稳定判据） 设系统开环传递函数中右半平面极点的个数为 \( n \)。当 \( \omega \) 从零到无穷大变化时系统 Nyquist 图在虚轴上（-1, -1

\[ T(\omega) \]
\[ T(0) \]
\[ 0.707T(0) \]
\[ \omega \_r \quad BW \]

\[ \omega \]
$\infty$区段的正穿越次数与负穿越次数之差等于 $n/2$，则闭环系统稳定。

图 2.4-3 开环传递函数的 Nyquist 图

闭环系统的稳定性还可以通过开环传递函数的 Bode 图来判定。$G(\omega)$ 的 Bode 图是把 $|G(j\omega)|$ 和 $\angle G(j\omega)$ 放在半对数坐标中绘制出的曲线。

定理 2.4-2 (Bode 稳定判据) 当 $\omega$ 从零到无穷变化时系统 Bode 图在幅频特性曲线大于等于零的频段内相频特性曲线对 $-180^\circ$ 线的正穿越次数与负穿越次数之差为 $n/2$，则闭环系统稳定。

这个判据与 Nyquist 稳定判据是对应的。与判定系统稳定性的代数判据相比，Nyquist 稳定判据和 Bode 稳定判据的突出优点是它们能够处理时滞对象。

利用 Bode 图不仅可以定性判别系统稳定性，而且可以定量地反映系统的相对稳定性，即稳定裕度。

增益裕度 $GM$ 是指在开环频率特性相角为 $-180^\circ$ 的频率 $\omega_c$ (又称交界频率) 处所对应的幅值的倒数。

$$GM = |G(j\omega)|^{-1}, \quad \angle G(j\omega) = -180^\circ \quad (2.4-3)$$

增益裕度是对系统离开不稳定边界有多远的一种度量，它愈高出 1 闭环系统的鲁棒性越好，传统设计方法中通常选择 $GM > 1.7$。

相位裕度 $PM$ 在开环频率特性幅值为 1 的频率 $\omega_c$ (又称剪切频率) 处使系统达到临界稳定状态所需要的附加相移量。

$$PM = \angle G(j\omega) - 180^\circ, \quad |G(j\omega_c)| = 1 \quad (2.4-4)$$
2.4.4 开环传递函数的 Bode 图

图 2.4.4 开环传递函数的 Bode 图

用开环频率特性研究闭环系统的动态特性时，相位稳定裕度的大小表征了动态过程的平稳性；剪切频率的大小表征了系统响应的快速性。

2.5 小结

过程控制有其自身的特点，按照这些特点可将控制对象划分为三种类型：自衡对象、积分对象和不稳定对象。过程控制系统的设计主要就是针对这几种对象进行的。

实际过程控制系统的性能往往用时域指标来描述，其原因在于多数系统性能的好坏是通过对典型输入信号的时域响应来评价的。这些指标包括超调、上升时间和调节时间等，除此之外，还定义了两个与系统干扰响应有关的性能指标：振荡数和恢复时间。用控制系统时域响应考察系统性能非常直观，但是在求解系统响应和研究系统参数变化对系统性能的影响却
很难，特别是对高阶的控制系统。频域响应方法可以较方便地用于控制系统的分析与设计，它所提供的 Nyquist 稳定判据至今仍是非常重要的理论工具。

第三章　鲁棒控制理论基础

本章将主要叙述如下两部分内容：第一部分内容为鲁棒控制理论的基本概念，如信号和系统的范数、控制要求的提出和控制器的参数化；第二部分是在这些概念的基础上对控制问题展开进一步的讨论，并给出鲁棒稳定性和鲁棒性能分析的基本结论。本章是对鲁棒控制理论的初步介绍，同时为以后各章对有关理论问题进行深入研究提供了必要的基础。

3.1 范数与空间

控制系统的目标就是通过控制某些输入使系统的输出达到要求的形式。一种简单的目标就是使系统的输出尽量接近系统的给定值。例如，在造纸生产过程中，成纸的定量和水分必须保持在给定值附近。另外，控制变量的大小也会有一定的限制，因为它本身可能已被限定，如阀门的流量就有个最大值，这取决于阀门的全开状态。对一个信号来说什么是大或者小？这就自然地引出了信号的范数。所以，信号小是指信号的范数小。

考察从$(-\infty, \infty)$映射到实数域$\mathbb{R}$的信号。假设它们是分段连续的，信号从$t=0$开始。对这样的信号可以定义几种不同的范数。范数必须满足以下几条性质：

(1) $\| u(t) \| \geq 0$

(2) $\| u(t) \| = 0 \iff u(t) = 0$

(3) $\| au(t) \| = |a| \| u(t) \|, a \in \mathbb{R}$

(4) $\| u(t) + v(t) \| \leq \| u(t) \| + \| v(t) \|$

以下是几种常用的信号范数。

1-范数：信号$u(t)$的1-范数是它的绝对值的积分：

$$\| u(t) \|_1 := \int_{-\infty}^{\infty} |u(t)| \, dt$$  (3.1-1)

2-范数：信号$u(t)$的2-范数是：

$$\| u(t) \|_2 := \left( \int_{-\infty}^{\infty} u(t)^2 \, dt \right)^{1/2}$$  (3.1-2)
这里 $u(t)^2$ 代表信号的瞬时功率，$\| u(t) \|_1$ 就是信号总的能量。

$\infty$-范数: 信号 $u(t)$ 的 $\infty$-范数是它的绝对值的上确界:

$$\| u(t) \|_\infty = \sup_t |u(t)|$$  \hspace{1cm} (3.1-3)

考察线性时不变的、因果的、有限维的系统。在时间域这样系统的输入输出模型可以用卷积方程来表示:

$$y(t) = \int_{-\infty}^{t} g(t - \tau) u(\tau) d\tau$$

令 $G(s)$ 表示传递函数，那么 $G(s)$ 是具有实系数的有理函数（因为是有限维的）。如果 $G(s)$ 在闭右半平面解析，我们就说 $G(s)$ 是稳定的；如果 $G(j\infty)$ 是有限的（分母的阶次大于分子的阶次），我们就说 $G(s)$ 是正则的；如果 $G(j\infty) = 0$（分母的阶次大于分子的阶次），我们就说 $G(s)$ 是严格正则的。对稳定的传递函数 $G(s)$ 我们引入两个系统范数

2-范数

$$\| G(s) \|_2 = \left( \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega \right)^{1/2}$$  \hspace{1cm} (3.1-4)

$\infty$-范数

$$\| G(s) \|_\infty = \sup_{\omega} |G(j\omega)|$$  \hspace{1cm} (3.1-5)

注意，如果 $G(s)$ 是稳定的，由 Parseval 定理有

$$\| G(s) \|_2 = \left( \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega \right)^{1/2} = \left( \int_{-\infty}^{\infty} |g(t)|^2 dt \right)^{1/2}$$  \hspace{1cm} (3.1-6)

$G(s)$ 的 $\infty$ 范数等于复平面的原点到 $G(s)$ 的 Nyquist 图的最远点的距离，它也是 $G(s)$ 的 Bode 幅频特性图的峰值。$\infty$ 范数的一个重要性质是它是次可乘的:

$$\| G(s)H(s) \|_\infty \leq \| G(s) \|_\infty \| H(s) \|_\infty$$  \hspace{1cm} (3.1-7)

从下面的定理可以知道什么时候这两个范数是有限的。

**定理 2.1-1** 稳定的传递函数 $G(s)$ 的 2 范数是有限的，当且仅当 $G(s)$ 是严格正则的，且无极点在虚轴上。稳定的传递函数 $G(s)$ 的 $\infty$ 范数有限的，当且仅当 $G(s)$ 是正则的，且无极点在虚轴上。  

一个感兴趣的问题是：如果知道输入信号的大小，那么输出会是多大呢？这涉及到系统范数和信号范数之间的一个重要联系，称为系统增益。考察一个线性系统，输入为 $u(t)$，输出为 $y(t)$，传递函数是 $G(s)$。假定 $u$ 是单
位数有界的，$G(s)$是稳定的和严格正则的，则系统输入输出关系如表 3.1-1 所示。

### 表 3.1-1 系统增益

<table>
<thead>
<tr>
<th>$u(t) = \delta(t)$</th>
<th>$| u(t) |_{2} \leq 1$</th>
<th>$| u(t) |_{\infty} \leq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$| g(t) |_{2}$</td>
<td>$| G(s) |_{2}$</td>
<td>$\leq | G(s) |_{\infty}$</td>
</tr>
<tr>
<td>$| y(t) |_{\infty}$</td>
<td>$| g(t) |_{\infty}$</td>
<td>$\leq | G(s) |_{2}$</td>
</tr>
</tbody>
</table>

在鲁棒控制理论中经常用到泛函空间的知识，由于本文的主要兴趣是关于过程控制的，所以这里不给出泛函空间的系统严谨的数学描述，而是着重从物理意义上对它们进行解释。

L₂空间

是严格正则有理复变函数的集合。

Lₘ空间

是正则有理复变函数的集合。

Hardy 空间

是在开右半平面（Re $s > 0$）解析的有理复变函数的集合。

H₂空间

是 Hardy 函数的空间，它的范数定义为

$$
\| F(s) \|_{2} := \left( \int_{-\infty}^{\infty} |F(j\omega)|^2 \right)^{1/2}
$$

(3.1-8)

$\| F(s) \|_{2}$应是有界的，即 $\| F(s) \|_{2} < \infty$。RH₂空间则表示H₂空间中实有理函数的全体。

Hₘ空间

是 Hardy 函数的空间，它的范数定义为

$$
\| F(s) \|_{\infty} := \sup_{s} |F(j\omega)|
$$

(3.1-9)

$\| F(s) \|_{\infty}$应是有界的，即 $\| F(s) \|_{\infty} < \infty$。RHₘ空间则表示Hₘ空间中实有理函数的全体。

### 3.2 控制要求

最基本的反馈控制系统包括两部分：控制对象和产生控制对象输入的
控制器，通常执行机构已归并到控制对象中。现在考察图 3.2-1 所示的基本反馈控制回路，其中 $C(s)$ 是控制器，$G(s)$ 是控制对象。在绝大多数情况下测量噪声都非常小，可以忽略不计，所以这里不考虑它。为了保证系统在物理上是可实现的，要求所有的传递函数都是因果的，并且规定 $C(s)$ 是正则的，$G(s)$ 是严格正则的。在后面的讨论中会看到这些要求与实际系统是符合的。

![图3.2-1 单位反馈回路](image)

单位反馈控制回路在过程控制研究中占有重要地位，这是因为一方面实际控制系统的反馈传递函数大都是比例函数，适当地调整给定值就可以化为单位反馈的情况，另一方面单位反馈控制回路便于进行理论分析。所以本文的讨论都是以单位反馈控制回路为研究对象的。

在标称情况（即模型和控制对象相等时）下，定义灵敏度函数为

$$ S(s) = \frac{1}{1 + G(s)C(s)} \quad (3.2-1) $$

它表示从干扰 $d2(t)$ 到输出 $y(t)$ 的传递函数，或从给定值 $r(t)$ 到控制误差 $e(t)$ 的传递函数。灵敏度函数的名称出自于下面的考虑。令 $T(s)$ 表示从给定值 $r(t)$ 到输出 $y(t)$ 的传递函数：

$$ T(s) = \frac{G(s)C(s)}{1 + G(s)C(s)} \quad (3.2-2) $$

定量表示 $T(s)$ 对 $G(s)$ 变化敏感程度的一种方法是取 $T(s)$ 的相对变化 $\Delta T / T$ 对 $G(s)$ 的相对变化 $\Delta G / G$ 的比的极限。以 $G(s)$ 作为变量，$T(s)$ 作为它的函数，于是有

$$ \lim_{\Delta G \to 0} \frac{\Delta T}{\Delta G / G} = \frac{d T}{d G} \frac{G}{T} = S \quad (3.2-3) $$

所以 $S(s)$ 是闭环传递函数 $T(s)$ 对 $G(s)$ 的无限小摄动的灵敏度。这里

$$ T(s) = 1 - S(s) \quad (3.2-4) $$

又称作余灵敏度函数。

在一定频率上我们希望 $S(s)$ 越小越好，$S(s)$ 小则系统带宽小，给定值 $r(t)$ 的变化和外部干扰 $d1(t), d2(t)$ 对输出 $y(t)$ 的影响小，系统的抗干扰能力就强。但是 $S(s)$ 只能在有限的频段内较小，这是因为对实际的控制系统 $G$
$$\lim_{s \to \infty} G(s)C(s) = 0$$  \hspace{1cm} (3.2-5)

一般来说我们希望 $T(s)$ 越接近 1 越好，$T(s)$ 越接近 1 系统带宽越大，表明系统给定值 $r(t)$ 的跟随能力越强，因为 $T(s) + S(s) = 1$，所以 $T(s)$ 也只能在一定的频段内满足要求（图 3.2-2）。

![图 3.2-2 典型的灵敏度函数和余灵敏度函数](image)

几乎所有的过程控制系统都是所谓的定值调节系统，这类系统的性能要求可以概括为在外界干扰和控制对象不确定性存在时输出 $y(t)$ 应当接近某一预定的输入 $r(t)$。因而用什么样的方式来量测跟踪误差就成为首要的问题。由于灵敏度函数和余灵敏度函数反映了反馈控制系统中最重要的联系，所以各种性能指标都可以利用这两个传递函数的权来得到。一种常用的性能指标是 H2 最优性能指标:

$$\min \int_0^\infty e^2(t)dt \leq \min \| e(t) \|_2$$  \hspace{1cm} (3.2-6)

![图3.2-3 系统输入标称化](image)

如果系统输入 $r(t)$ 已知，可以引入一个滤波权函数 $W(s) \equiv r(s)$ 使系统输入
标称化为单位脉冲信号（图3.2-3）。根据系统增益有
\[ \| e(t) \|_2 = \| W(s)S(s) \|_2 \]
所以等价的频域性能指标为
\[ \min \| W(s)S(s) \|_2 \] (3.2-7)
或者将常数因子的作用包含在 \( W(s) \) 中，表示为
\[ \| W(s)S(s) \|_2 < 1 \] (3.2-8)
如果不知道系统的输入，只知道系统输入是能量有界的，则会用到 \( H_\infty \) 最优性能指标：
\[ \min \int_0^\infty e^2(t)dt = \min \sup \| e(t) \|_2 \] (3.2-9)
与上面类似地引入一个滤波权函数 \( W(s) \) 使系统输入标称化为单位能量有界，譬如说取 \( W(s) = r(s) \) 由系统增益可知
\[ \sup \| e(t) \|_2 = \| W(s)S(s) \|_\infty \]
那么等价的频域 \( H_\infty \) 性能指标就是
\[ \min \| W(s)S(s) \|_\infty \] 或 \[ \| W(s)S(s) \|_\infty < 1 \] (3.2-10)
这类问题有个特殊的名称，叫作最小化灵敏度问题。

注意，在最优性能指标中引入滤波权函数 \( W(s) \) 是为了数学处理的方便，它对控制系统的影响内在地包含于设计的控制器中，而不是另外在给定值或干扰之间加入一个物理环节。在有的文献中，又有 \( W(s) \) 称作性能权函数，这是因为选择不同的 \( W(s) \) 得到的系统性能有所不同，原则上 \( W(s) \) 是针对系统输入的类型选定的，因此 \( W^{-1}(s) \) 一般是低通函数，它的典型响应如图3.2-4所示。

\( H_2 \) 最优控制和 \( H_\infty \) 最优控制的一个显著区别在于 \( H_2 \) 最优控制系统是针对一个已知输入信号设计的，因此容易得到比较好的结果。而 \( H_\infty \) 最优控制是针对未知但能量有界的一类信号设计的，所以在某些情况下会有较大的适用范围。

在实际的控制系统中总是不可避免地存在各种各样的干扰（包括给定值的变化），我们希望当干扰发生时，由此产生的误差能够逐渐消失，或者说系统具有渐近跟踪特性。我们在上一章讨论了渐近跟踪特性与系统输入和系统类型的关系，那么渐近跟踪特性与灵敏度函数又有什么关系呢？

定理3.2-1（Morari and Zafiriou, 1989） 设系统是 \( m \) 型的，单位反馈闭环系统是稳定的，则灵敏度函数 \( S(s) \) 满足

• 29 •
图3.2-4 $W^{-1}(s)$的典型响应

$$\lim_{s \to 0} \frac{S(s)}{s^k} = 0, 0 \leq k < m$$

当 $t \to \infty$ 时闭环系统可以跟踪形如 $\sum_{i=0}^{m} a_i s^{-i}$ 的给定值变化，其中 $a_i$ 是实的常数。

该定理可由复变函数的终值定理得证。

在工业生产过程中，给定值的变化大都可以用阶跃或斜坡函数来近似，对这两类输入有如下的推论。

推论 3.2-2 假定闭环系统是稳定的，则

1. 如果给定值是阶跃函数，那么当 $t \to \infty$ 时闭环系统渐近跟踪的充要条件是 $S(s)$ 至少有一个零点在原点。

2. 如果给定值是斜坡函数，那么当 $t \to \infty$ 时闭环系统渐近跟踪的充要条件是 $S(s)$ 至少有两个零点在原点。

3.3 控制器参数化

控制系统的一个基本要求是对所有有界的外部输入信号其内部输出信号都是有界的，这时仅仅考察系统闭环传递函数是不够的，这个传递函数可能是稳定的，但是可能有的内部信号无界。要满足上述条件，系统必须是内稳定的。
定义 3.3-1  如果线性时不变控制系统的任何两点间的传递函数都是稳定的，则称控制系统是内稳定的。

从内部稳定性的观点来看图 3.2-1 中的 d2(t) 和 r(t) 对 u(t) 的影响是等价的，整个系统中有两个单独的输入 r(t) 与 d1(t) 和两个单独的输出 y(t) 与 u(t)，所以图 3.2-1 所示的系统是内稳定的，当且仅当从 r(t) 与 d1(t) 到 y(t) 与 u(t) 的传递函数矩阵 H(s) 中的所有元素都是稳定的。

\[
H(s) = \begin{bmatrix}
    \frac{G(s)C(s)}{1 + G(s)C(s)} & \frac{G(s)}{1 + G(s)C(s)} \\
    \frac{-G(s)C(s)}{1 + G(s)C(s)} & \frac{-G(s)}{1 + G(s)C(s)}
\end{bmatrix} \tag{3.3-1}
\]

如果控制对象是稳定的，引入 Q 函数

\[
\hat{Q}(s) = \frac{C(s)}{1 + G(s)C(s)} \tag{3.3-2}
\]

单位反馈回路控制器可以由上式的逆运算求得

\[
C(s) = \frac{Q(s)}{1 - G(s)Q(s)} \tag{3.3-3}
\]

因此矩阵 H(s) 变为

\[
H(s) = \begin{bmatrix}
    G(s)Q(s) & G(s)(1 - G(s)Q(s)) \\
    Q(s) & -G(s)Q(s)
\end{bmatrix} \tag{3.3-4}
\]

那么系统内稳定的充要条件就是 Q(s) ∈ RH∞，或者说 Q(s) 是稳定且正则的实际传递函数。

与传统的稳定性概念相比，内稳定概念显然更加完善。

定理 3.3-1 假设 G(s) 稳定，那么使反馈系统内稳定的所有控制器 C(s) 的集合为

\[
\left\{ \frac{Q(s)}{1 - G(s)Q(s)} : Q(s) \in RH_{\infty} \right\}
\]

这就是著名的 Youla 参数化定理。为了更好地理解这个定理，我们利用 Morari and Zafiriou(1989) 提出的内模控制结构给出它的直观解释。根据第一章的讨论知道内模控制结构与单位反馈控制结构是等价的。假定标称控制对象是 G_n(s)，对图 3.2-1 进行等价变换，得到图 3.3-1，如果把虚线框内的结构看作是 Q(s)，那么图 3.3-1 就是内模控制结构。在标称情况下，G(s) = G_n(s)，e(t) = r(t)，所以控制系统是开环的，它的稳定性只取决于 Q(s)。如果 G(s) 中包括了滞后，上述结论也是成立的。
Youla 参数化的结果看起来似乎十分简单，但它却是现代鲁棒控制理论产生的基础，那么 Youla 参数化对控制系统的设计有着什么样的重要意义呢？

我们知道，大多数的综合问题可以这样提出：给定控制对象 $G(s)$，设计控制器 $C(s)$，使得控制系统达到

（1）内稳定；

（2）具有某些希望的附加特性，如输出 $y(t)$ 迅近跟踪给定值 $r(t)$。

传统的求解过程常常由于寻找使闭环控制系统稳定的控制器 $C(s)$ 而被极大地复杂化了，Youla 参数化则提供了一个通过稳定的传递函数 $Q(s)$ 参数化所有稳定控制器的方法。当寻找一个特殊的控制器时，可以简单地不失一般性地在整个稳定的传递函数空间里搜寻。参数化的过程保证了最终的反馈控制器自动产生一个闭环稳定的系统。这也正是 Youla 参数化成为频域鲁棒控制理论的基本出发点的原因。不仅如此，在传统的设计过程中 $C(s)$ 与系统闭环传递函数之间的关系是非线性的，而 $Q(s)$ 与系统灵敏度函数和余灵敏度函数之间的关系则是线性的。

\[
S(s) = \frac{1}{1 + G(s)C(s)} = 1 - G(s)Q(s) \tag{3.3-5}
\]

\[
T(s) = \frac{G(s)C(s)}{1 + G(s)C(s)} = G(s)Q(s) \tag{3.3-6}
\]

这对简化设计过程是非常有利的。

对一般情况，控制对象 $G(s)$ 可能不稳定，在 RH$_\infty$ 空间中做它的互质分解

\[
G(s) = \frac{N(s)}{M(s)}, \quad N(s), M(s) \in RH_{\infty} \tag{3.3-7}
\]

设 $X(s), Y(s)$ 是 RH$_\infty$ 空间中的两个函数且满足方程

\[
N(s)X(s) + M(s)Y(s) = 1 \tag{3.3-8}
\]

- 32 -
那么有如下的定理。

定理 2.3-2（Doyle et al., 1992） 使反馈系统内稳定的控制器 \( C(s) \) 的集合为
\[
\begin{align*}
X(s) + M(s)Q(s) = 0, \\
Y(s) - N(s)Q(s) 
\end{align*}
\]
其中 \( Q(s) \in \mathbb{R}^{n \times n} \).

3.4 鲁棒性分析的重要结论

在实际的工业应用中，要得到准确的数学模型是非常困难的。所以要在控制器的设计中考虑到不确定性的影响，为此先要将不确定性描述出来。有方法可以描述不确定对象，但是考虑到数学处理的方便，只有考虑几种方法能够使用。一种常用的描述方法称作结构不确定性，假定标称对象的传递函数是 \( G(s) \)，实际的对象是 \( G_0(s) \)。标称的不确定性和实际的不确定性是相同的。假定不确定性是 \( \delta(s) \)，则结构不确定性模型表示如下:
\[
G(j\omega) = G_0(j\omega) + \delta_0(j\omega)
\]
或
\[
\delta_0(j\omega) = k_1\delta_1(j\omega) + k_2\delta_2(j\omega) + \cdots + k_n\delta_n(j\omega)
\]
其中 \( k_{\min} \leq k_i \leq k_{\max}, i = 0, 1, \cdots, n \).

另一种对应的方法称为非结构不确定性，加性非结构不确定性模型表示如下:
\[
G(j\omega) = G_0(j\omega) + \delta_0(j\omega)
\]
或
\[
|\delta_0(j\omega)| \leq A_0(\omega)
\]
或表示为增性非结构不确定性模型:
\[
G(j\omega) = G_0(j\omega)(1 + \delta_0(j\omega))
\]
或
\[
|\delta_0(j\omega)| \leq A_0(\omega)
\]
这里 \( \delta_0(j\omega) = \delta_0(j\omega) / G_0(j\omega), A_0(\omega) = \delta_0(\omega) / G_0(j\omega) < 1 \)。 \( |A_0(\omega)| \) 给出了不确定性的界。为了不增加模型表示的不确定性，所以又称为不增加模型族。

虽然结构不确定性比非结构不确定性反映了更多的系统信息，但是对我们要了解非结构不确定性更加重要，这有两个原因。首先，在控制器设计中采用的模型应当包括某些非结构化的不确定性才可能覆盖高频未模态动态特性。其次，对一种特定的非结构化不确定性，如果结构性不确定性，我们容易找到即简单又具有一般性的分析方法，它可以大大简化分析以便作出比较精确
的论断。其代价当然是这些论断的保守性。

用准确的数学模型来描述真实的物理系统是不可能的，因为总是存在不确定性，不确定性意味着即使我们知道一个实际系统的输入也不能准确地预测其输出，所以对这个系统我们不能确定。但是如果我们根据模型预测输出对输入的响应，依据它设计一个控制系统，并且这种设计考虑到了模型的不确定性，那么设计的结果仍能够成功地运用于实际的物理系统。因此自然会有如下的问题：不确定性是怎样影响系统性能的，设计的结果会因此受到怎样的限制。这就引出了两个重要的概念：鲁棒稳定性和鲁棒性能。

一个控制器如果对不确定性模型中的每个对象都能保证反馈系统内稳定，那它就是鲁棒稳定的。利用 Nyquist 稳定判据对乘性不确定性模型可以推出如下定理。

定理 3.4-1(Doye et al., 1992) C(s)能保证鲁棒稳定性的充要条件是：

$$\| D_m(s)T(s) \| \infty < 1$$  \hspace{1cm} (3.4-4)

鲁棒性能的一般含义是指不确定性模型中的所有对象都满足内稳定和一种特定的性能。我们讨论乘性不确定性。假设标称性能条件是 $$\| W(s)S(s) \| \infty < 1$$。当存在不确定性时，$S(s)$ 被动到

$$\frac{1}{1 + (1 + D_m(s))G(s)C(s)} = \frac{S(s)}{1 + D_m(s)T(s)}$$

显然，鲁棒性能条件应当是

$$\| D_m(s)T(s) \| \infty < 1 \quad \text{和} \quad \| \frac{W(s)S(s)}{1 + D_m(s)T(s)} \| \infty < 1$$

由此出发可以证明：

定理 2.5-2(Doye et al., 1992) 鲁棒性能的充分必要条件是:

$$\| W(s)S(s) + |D_m(s)T(s)| \| \infty < 1$$  \hspace{1cm} (3.4-5)

这两个定理的重要意义在于给出了检验系统鲁棒性的简单而实用的充要条件。

注意到鲁棒性能条件中包括了对标称性能和鲁棒稳定性两个方面的要求，我们希望最小化 $$\| W(s)S(s) \| \infty$$ 以获得好的标称性能，并且最小化 $$\| D_m(s)T(s) \| \infty$$ 以获得好的鲁棒稳定性。但是 $$S(s) + T(s) = 1$$ 的存在使这两个性能目标之间存在着一定的约束，改善标称性能就会恶化鲁棒稳定性；改善鲁棒稳定性就要牺牲标称性能。所以如何在标称性能和鲁棒稳定性这两个
目标之间获得最好的折衷鲁棒控制器设计的主要问题。

鲁棒性能问题并不总是可解的，当解存在时有两种常规求解方法：回路成形方法和插值法（Doyle et al., 1992 ; Dorato et al., 1992）。回路成形方法是由 Bode 在设计反馈放大器时提出的（Bode, 1945）一种图解方法。最简单的回路成形方法就是经典控制系统理论中的超前和滞后校正。回路成形方法的一般思想是构造回路传递函数 $G(s)C(s)$ 以近似满足鲁棒性能要求，然后由 $\frac{Q(s)}{Q(s)C(s)} = C(s)$ 得到控制器。另外一方面控制器设计问题可以转化为所谓的模型匹配问题，就是寻找一个稳定的传递函数 $Q(s)$ 使 $T_1(s) - T_2(s)Q(s)$ 无穷上界最小。我们这样来解释：$T_1(s)$ 代表模型，$T_2(s)$ 代表对象，$Q(s)$ 是一个待设计的控制器，以便 $T_2(s)Q(s)$ 接近 $T_1(s)$，这样 $T_1(s) - T_2(s)Q(s)$ 就是误差传递函数。模型匹配问题可以用 Nevanlinna-Pick 插值法求解（Garnett, 1981）。

然而进一步的分析必然会产生这样一个问题：当 $G(s), W(s)$ 和 $Δ_u(s)$ 满足什么样的条件鲁棒性能问题才是可解的？对式 (3.4-5) 进行变换，两边同时乘以 $1 + G(s)C(s)$，就可以得到一个如图 3.4-1 所示的直观图解（Doyle et al., 1992）。对每个频率 $ω$，构造两个闭圆，一个以 $-1$ 为圆心，以 $|W(ω)|$ 为半径；另一个以 $C(ω)C(ω)$ 为圆心，以 $|Δ_u(s)G(s)C(s)|$ 为半径，那么鲁棒性能条件成立，且且仅当在每个频率下这两个圆都是分离的。

![鲁棒性能图解](image)

图3.4-1 鲁棒性能图解

3.5 小结

本章介绍了鲁棒控制理论的基本概念，并在此基础上研究了系统鲁棒稳定性和鲁棒性能权衡问题，这些讨论表明鲁棒控制理论是未来研究不确定性系统的一种具有一般性的方法。在鲁棒控制理论中，控制器的参数化是最基本的和贯穿始终的重要概念。在本文后面的讨论中可以发现，由控制器
的参数化出发可以得到许多完美的结论。

第四章 自衡对象 $H_{\infty}$PID 控制

时滞对象的控制是过程控制理论的核心问题之一，关于这一问题的研究最早可以追溯到Callender et al. (1936)的工作，那时就已经认识到控制系统中时滞带来的困难。半个多世纪以来，为了解决这一难题提出了各种各样的设计方法。Ziegler and Nichols (1942) 提出的利用 1/4 衰减比规则整定 PID 控制器的方法至今仍在使用，但是这种方法仅在时滞较小时有效；Cohen and Coon (1953) 研究了利用一阶模型的增益、时间常数和纯滞后来整定 PID 控制器的问题，遗憾的是也未得到满意的结果。Smith (1957) 年提出了一种预估补偿方法，后来被称为 Smith 预估器。Smith 预估器是一种非常有效的控制结构，但是一般认为它对模型的误差比较敏感 (Ioannides et al., 1979; Palmor, 1980; Horowitz, 1983; Yamanaka and Shimemura, 1987; Laughlin et al., 1987; Feng, 1991; etc.), 抗干扰能力也较差 (Doss and Moore, 1982; Watanabe et al., 1983; Wong and Seborg, 1986; Wellons and Edgar, 1987; Hung et al., 1990; etc.)。

过程控制中使用的大部分控制器都具有 PID 类型结构。尽管过去的几十年里在过程控制方面取得了许多重要进展，但是由于控制理论发展的限制和控制工具的缺乏，关于 PID 控制器设计的两个关键问题在很长一段时间里一直没有得到完全解决。一个问题是大纯滞后系统的 PID 控制问题。很多方法在给出整定公式时就对控制对象的滞后期限做了近似，而有的整定方法虽然没有具体限制控制对象的滞后范围，但对于时滞较大的系统不是整定后的性能很差就是得不到稳定的系统。另一个问题系统的鲁棒性问题。以往的整定方法很少考虑到控制对象的不确定性，因此人们既不知道整定后的系统是否具有较好的鲁棒性，也不知如何控制对象不确定性的大小调整系统的鲁棒性。

本章主要讨论三个主要问题:

(1) 针对一阶惯性加纯滞后控制对象，如何解析设计 PID 控制器，使其同时具有好的干扰抑制特性和鲁棒性。

(2) 作为过程控制中应用最广泛的两种控制器，PID 控制器与 Smith
预估器之间有什么联系。

（3）很多控制系统对稳态和上升时间有一定的要求，有没有办法定量地估计标称系统的性能。

4.1 传统PID控制器的整定

系统一旦达到稳定，如果没有干扰的话，就不再需要控制。但是干扰是不可避免的，它使系统的输出偏离给定值，因此要不断改变控制对象的输入，使输出维持在给定值上。为达到这个目的必须有一个控制策略，所谓控制策略就是决定控制对象输入相对于过去和现在偏差的函数关系。在工业过程控制中应用最广泛、最成熟的控制策略就是PID控制器，理想PID控制器可用下面的方程描述。

\[ u(t) = K_c \left( e(t) + \frac{1}{T_i} \int e(t) \, dt + T_d \frac{de(t)}{dt} \right) \]  \hspace{1cm} (4.1-1)

它的传递函数为

\[ G(s) = K_c \left( 1 + \frac{1}{T_i s} + T_d s \right) \]  \hspace{1cm} (4.1-2)

由于纯微分器是非正则的，在物理上不能实现，所以实际PID控制器中采用的往往是近似的微分器：

\[ G(s) = K_c \left( 1 + \frac{1}{T_i s} + \frac{T_d s}{T_r s + 1} \right) \]  \hspace{1cm} (4.1-3)

另一种做法是引入一个惯性环节对高频特性进行衰减：

\[ G(s) = K_c \left( 1 + \frac{1}{T_i s} + T_d s \right) \frac{1}{T_r s + 1} \]  \hspace{1cm} (4.1-4)

或者是用校正环节来代替微分作用：

\[ G(s) = K_c \left( 1 + \frac{1}{T_i s} \right) \frac{T_d s + 1}{T_r s + 1} \]  \hspace{1cm} (4.1-5)

但是恰恰是这样简单的一个控制器，目前还有一些关键的问题没有解决，例如控制器设计的解析方法一直没有找到。目前控制器整定使用的还是传统的基于经验的方法或者数值方法，这些方法只利用了系统动态特性的部分信息，所以无法知道在多大程度上逼近了最优解，也不容易判断系统性能和鲁棒性之间的折衷。

关于控制器参数的整定，在许多研究文献中给出了如下的设计方法：
（1）确定适当的性能准则（如 ISE、IAE 或 ITAE）。
（2）采用 P、PI 或 PID 控制器，调节控制器的三个参数，计算性能准则的值。
（3）按性能准则的“最佳值”选择控制器。
尽管在数学意义上上述步骤是可行的，但是在实用上有严重的缺点：
（1）非常麻烦。
（2）依赖于过程的模型，没有考虑到模型的不确定性。
（3）在一定程度上不能确定哪种准则最合适，以及应考虑哪一种输入变化。
（4）因为有三个可调参数，所以很难得到“最佳值”。
所以实践中行之有效的仍然是那些基于经验的方法。在过程控制中广泛应用的一种整定方法是临界比例度法，又称 Z-N 法，最初是 Ziegler and Nichols (1942) 提出的。在此基础上发展起来的响应曲线法 (R-C 法) 是根据 \(1/4\) 衰减比准则整定参数的方法，使用非常方便，应用也很普遍。C-C 法 (Cohen and Coon, 1953) 是采用多种性能指标综合出来的具体计算方法，控制效果与 R-C 法相似。设控制对象为

\[
G(s) = \frac{K}{\tau s + 1} e^{-\theta s}
\]

系统临界增益为 \(K_c\)、临界振荡周期为 \(T_c\)，三种方法的整定规则列于表 4.2-1 (邵惠鸽等人译, 1982; 王骧程和祝和云, 1991; 金以慧, 1993)。

### 表 4.2-1 常用整定方法

<table>
<thead>
<tr>
<th>整定方法</th>
<th>(KK_c)</th>
<th>(T_1/\tau)</th>
<th>(T_0/\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-C 法</td>
<td>(1.2(\theta/\tau)^{-1})</td>
<td>(2(\theta/\tau))</td>
<td>(0.5(\theta/\tau))</td>
</tr>
<tr>
<td>C-C 法</td>
<td>(1.35(\theta/\tau)^{-1} + 0.27)</td>
<td>(2.5(\theta/\tau)[1 + (\theta/\tau)/5]/1 + 0.6(\theta/\tau))</td>
<td>(0.37(\theta/\tau)/1 + 0.2(\theta/\tau))</td>
</tr>
<tr>
<td>Z-N 法</td>
<td>(0.6KK_c)</td>
<td>(0.5T_c/\tau)</td>
<td>(0.125T_c/\tau)</td>
</tr>
</tbody>
</table>

认为是对 Z-N 法最成功的改进。对给定值引入权值 $\beta$ 后，PID 控制器的方程修改为

$$ u(t) = K_r \left( \beta r(t) - y(t) \right) + \frac{1}{T_i} \int e(t) dt + T_o \frac{de(t)}{dt} \quad (4.1-7) $$

权值 $\beta$ 和积分时间修正系数 $\mu$ 是通过大量的仿真确定的。定义系统标准增益 $K_r$ 为

$$ K_r = K K_r \quad (4.1-8) $$

标准滞后为

$$ \theta_s = \frac{\theta}{\tau} \quad (4.1-9) $$

当 $2.25 < K_r < 15, 0.16 < \theta_s < 0.57$ 时，纯滞后时间较小，不须修正 Z-N 整定公式，只要引入权值 $\beta$ 即可。确定 $\beta$ 的经验公式为

10% 超调：$\beta = \frac{15 - K_r}{15 + K_r} \quad (4.1-10)$  
20% 超调：$\beta = \frac{36}{27 + 5K_r} \quad (4.1-11)$

当 $1.5 < K_r < 2.25, 0.57 < \theta_s < 0.96$ 时，纯滞后时间较大，需要修正 Z-N 整定公式的积分常数：

$$ T_i = 0.5 \theta_s \quad (4.1-12) $$

若要求的超调是 20%，那么确定权值 $\beta$ 和积分时间修正系数 $\mu$ 的经验公式为

$$ \beta = \frac{8}{17} \left( \frac{4}{9} K_r + 1 \right) \quad (4.1-13) $$

$$ \mu = \frac{4}{9} K_r \quad (4.1-14) $$

传统的过程控制理论认为，PID 控制器无法用于大纯滞后对象的控制，但是对导致这一结果的直接原因却缺乏必要的阐述，如是由于稳定性的原因，还是由于性能的原因，如果是由于性能的原因，多差的性能才算是不能使用。本文规定，PID 控制器不能用于大纯滞后对象的控制是指，与控制对象的纯滞后相比，控制系统具有不可接受的上升时间。一个经验的定量估计是，标称控制系统的上升时间大于控制对象的纯滞后。
4.2 H∞PID 控制器设计

为了更好地理解本文提出的 PID 控制器的优点，首先从 Smith 预估控制结构出发讨论控制器的设计问题。考虑图 4.2-1 所示的单位反馈控制回路。假定控制对象 $G(s)$ 的模型为

$$
\hat{G}_m(s) = G_m(s)e^{-\theta s}
$$

(4.2-1)

设 $d = 0$。在标称情况下，控制对象的输出信号等于

$$
y(s) = C(s)G_m(s)e^{-\theta s}e(s)
$$

(4.2-2)

为了消除纯滞后的不良影响，要求测量信号反映的是现时的而不是延迟的信息，即

$$
y_s(s) = C(s)G_m(s)e(s)
$$

(4.2-3)

为此，将控制器 $C(s)$ 修改为 $R(s)$，并在信号 $y(s)$ 上附加一个量

$$
y_s(s) = R(s)G_m(s)e(s) - R(s)G_m(s)e^{-\theta s}e(s)
$$

(4.2-4)

有可能实现，因为

$$
y_s(s) + y(s) = y_s(s)
$$

(4.2-5)

图 4.2- 2 Smith预估器的基本结构

将 $y_s(s)$ 加到信号 $y(s)$ 上的含义如图 4.2-2 所示。信号 $y_s(s)$ 可通过围绕控制对象的一个简单的局部回路取出，该回路称为纯滞后补偿器或 Smith 预估器。
注意，本文讨论的 Smith 预估器与传统过程控制理论中讨论的有所不同。在传统过程控制理论中，Smith 预估控制器与单位反馈控制回路控制器相同，因此 Smith 预估控制结构与单位反馈控制回路是等价的；这里给出的 Smith 预估控制器与单位反馈控制回路控制器不同，Smith 预估控制结构与单位反馈控制回路是等价的，单位反馈控制回路中的控制器则可表示为

$$C(s) = \frac{R(s)}{1 + (G_w(s) - G_m(s))R(s)} \quad (4.2-6)$$

由后面的讨论可以看到这会给控制器的设计带来很大的方便。

图 4.2-3 Smith 预估器的等价结构

在传统的整定方法中，一般是先固定控制器的结构，然后凭经验调节参数。本文则提出一种简单并且更具有逻辑性的设计方法。首先确定一个最优性能指标，然后同时推导出控制器的结构和参数。

对图 4.2-2 进行等价变换得到图 4.2-3，容易看出 Smith 预估控制器和 Youla 参数化之间存在如下的联系：

$$Q(s) = \frac{R(s)}{1 + G_w(s)R(s)} \quad (4.2-7)$$

在标称情况下 ($G(s) = G_w(s)$) 从干扰 $d$ 到输出 $y$ 的传递函数是

$$S(s) = 1 - G(s)Q(s) \quad (4.2-8)$$

取控制系统性能的优化指标为 $\min \| W(s)S(s) \|_\infty$，这里 $W(s)$ 是权函数，应选择为使系统输入的 2 范数单位有界。这个指标意味着使 $d(t)$ 对 $y(t)$ 的最大影响最小化。

在控制器设计之前必须先确定一个固定的输入。对于过程控制可以选 $d(s) = 1/s$。对 $d(s)$ 进行标准化处理，取 $W(s) = 1/s$。考虑到渐近跟踪的要求，还要对设计过程施加一个约束：

$$\lim_{s \to 0} \left( 1 - G(s)Q(s) \right) = 0 \quad (4.2-9)$$

* 42 *
事实上，按下面方法设计的控制器，这一约束总是会得到满足。

Shinskey（方崇智译，1987）指出，虽然大多数过程的动态响应是复杂的，但它们却可以相当准确地用一阶惯性加纯滞后后的广义控制对象来模拟。考虑广义控制对象

$$G(s) = \frac{Ke^{-s\tau}}{\tau s + 1}$$

（4.2-10）

利用1/1 Pade公式展开纯滞后项有

$$e^{-s\tau} = \frac{1 - \frac{\tau}{2}s}{1 + \frac{\tau}{2}s}$$

得到近似控制对象

$$G(s) = K \frac{1 - \frac{\tau}{2}s}{(\tau s + 1)(1 + \frac{\tau}{2}s)}$$

（4.2-11）

我们将从近似控制对象出发来求取控制器，然后再用于控制近似前的控制对象。Pade近似对系统的性能将在后面讨论。

为了求得满足指标性能的控制器，我们先放松对$Q(s)$的正则性的要求，寻找一合适的参数$Q_m(s)$，然后让$Q_m(s)$在高频衰减，从而得到合适的$Q(s)$。这种方法行得通的理由是$W(s)$严格正则，在高频对它无性能要求。下面的定理是关于复变函数的一个基本结论。

定理4.2-1（最大模定理） 假定$\Omega$是复平面的一个单连通的非空开集，$G(s)$是$\Omega$中的解析函数。如果$G(s)$不是常数，那么$|G(s)|$的最大值不是在$\Omega$中的内部点取得的。

设$\Omega$是复开右半平面，则$G(s)$在$\Omega$中有一零点$2/\bar{\theta}$，对所有的$Q(s)$成立

$$\|W(s)(1 - G(s)Q(s))\|_\infty \geq \left|W\left(\frac{2}{\bar{\theta}}\right)\right|$$

（4.2-12）

因此

$$\min \|W(s)S(s)\|_\infty = \min \|W(s)(1 - G(s)Q(s))\|_\infty = \left|W\left(\frac{2}{\bar{\theta}}\right)\right|$$

（4.2-13）

由上式得到最优的$Q_m(s)$是
显然 $Q_m(s)$ 是非正则的。由渐近跟踪约束，选择如下的低通函数对其进行衰减

$$J(s) = \frac{1}{(\lambda s + 1)^2}, \lambda > 0$$

那么

$$Q(s) = Q_m(s)J(s) = \frac{(\lambda s + 1)(1 + \frac{\theta}{2}s)}{K(\lambda s + 1)^2}$$  (4.2-15)

当 $\lambda \to 0$，这一 $Q(s)$ 可获得 $\| W S(s) \|_\infty$ 的最优性。由此求得控制器为

$$R(s) = \frac{Q(s)}{1 - G_{me}(s)Q(s)}$$

$$= \frac{1}{K} \frac{(\lambda s + 1)(1 + \frac{\theta}{2}s)}{\lambda^2 s^2 + (2\lambda + \frac{\theta}{2})s}$$  (4.2-16)

这个控制器的一个显著特征是它抵消了近似模型的极点，或者等价地抵消了近似前模型的两个主导极点。

### 4.3 $H_\infty$ PID 控制器与 Smith 预估器的关系

自从 PID 控制器和 Smith 预估器被提出后，得到了广泛的研究和应用。尽管控制理论在过去的几十年里取得了许多重要的进展，但是 PID 控制器和 Smith 预估器控制器至今仍然是过程控制的主要手段。在经典的过程控制理论中，它们一直被视作是两种不同的技术，我们将证明按适当的规则整定，它们相互等价。

我们在前面讨论过，Smith 预估结构与单位反馈控制回路是等价的，因此有

$$C(s) = \frac{R(s)}{1 + (G_{me}(s) - G_m(s))R(s)}$$

$$= \frac{1}{K} \frac{(\lambda s + 1)(1 + \frac{\theta}{2}s)}{\lambda^2 s^2 + (2\lambda + \frac{\theta}{2})s}$$  (4.3-1)
与实际的 PID 控制器为

\[ C(s) = K_c \left( 1 + \frac{1}{T_1 s} + T_\delta s \right) \frac{1}{T_s s + 1} \]

相比较，得到控制器的参数为

\[ T_\rho = \frac{\lambda^2}{2\lambda + \frac{\theta}{2}}, \quad T_i = \frac{\theta}{2} + \tau, \]

\[ T_\delta = \frac{\theta}{2T_\rho}, \quad K_c = \frac{T_1}{K(2\lambda + \frac{\theta}{2})} \tag{4.3-2} \]

或者选择实际的 PID 控制器为

\[ C = K_c \left( 1 + \frac{1}{T_1 s} + \frac{T_\delta s}{T_s s + 1} \right) \]

得到控制器的参数为

\[ T_\rho = \frac{\lambda^2}{2\lambda + \frac{\theta}{2}}, \quad T_i = \frac{\theta}{2} + \tau - T_\rho, \]

\[ T_\delta = \frac{\theta}{2T_\rho} - T_\rho, \quad K_c = \frac{T_1}{K(2\lambda + \frac{\theta}{2})} \tag{4.3-3} \]

或者选择实际的 PID 控制器为

\[ C = K_c \left( 1 + \frac{1}{T_1 s} \right) \frac{T_\rho s + 1}{T_s s + 1} \]

它的参数是

\[ T_\rho = \frac{\lambda^2}{2\lambda + \frac{\theta}{2}}, \quad T_i = \tau(或\frac{\theta}{2}), \]

\[ T_\delta = \frac{\theta}{2}(或\tau), \quad K_c = \frac{\tau}{K(2\lambda + \frac{\theta}{2})} \tag{4.3-4} \]

根据以上分析容易看出 R(s) 实际上也是一个 PID 控制器。

4.4 系统性能和鲁棒性

注意到在我们得到的 PID 控制器中，有一个可调的参数 \( \lambda, \beta \) 与系统的
标称性能和鲁棒性有着直接的关系，它表示了二者之间的折衷。

1. 如果实际的控制对象就是近似模型，那么系统的闭环传递函数是

\[ T(s) = \frac{1 - \frac{\theta}{2}s}{(\lambda s + 1)^2} \]  \hspace{1cm} (4.4-1)

干扰传递函数是

\[ S(s) = \frac{\lambda^2 s^2 + (2\lambda + \frac{\theta}{2})s}{(\lambda s + 1)^2} \]  \hspace{1cm} (4.4-2)

这时系统具有非常平稳的响应（图 4.4-1），\( \lambda \) 可以任意选择，当 \( \lambda \to 0 \) 时系统达到最优。

![Magnitude vs Frequency](image)

图 4.4-1 近似模型（虚线）和非近似模型（实线）的响应曲线

2. 如果实际的控制对象是一阶惯性加纯滞后的形式，则

\[ T(s) = \frac{(1 + \frac{\theta}{2}s)e^{-\theta}}{\lambda^2 s^2 + (2\lambda + \frac{\theta}{2})s + (1 + \frac{\theta}{2})e^{-\theta}} \]  \hspace{1cm} (4.4-3)

\[ S(s) = \frac{\lambda^2 s^2 + (2\lambda + \frac{\theta}{2})s}{\lambda^2 s^2 + (2\lambda + \frac{\theta}{2})s + (1 + \frac{\theta}{2})e^{-\theta}} \]  \hspace{1cm} (4.4-4)

系统在转折频率处产生了波动（图 4.4-1），并且有一个较大的峰值，这是由于 Pade 公式的误差引起的；这个误差的存在限制了 \( \lambda \) 取值的下限，这个下
限大约是 0.065θ。在过程控制中 λ 的取值一般在 0.1 θ-1.1 θ 之间，推荐 λ 取 0.5θ 左右。当 λ 减小时，T 增加，S 减小，根据鲁棒控制理论，这意味着系统的标称性能趋向于最优，但是鲁棒性很差，从系统的闭环响应来看就是系统具有较大的带宽（图 4.4-2）；当 λ 增加时，T 减小，S 增加，系统的鲁棒性得到增强，代价是标称性能变差。这等价于减少了系统的带宽。因为 Pade 公式引入的误差是确定的，所以 λ 对标称性能的影响也是一定的，故超越方程求出这个影响是非常困难的，利用仿真工具可以方便地得到它（图 4.4-3）。
可以看到，系统的性能仅与 λ/θ 有关，这与式（4.4-3）是吻合的，T(s) 与系统的时间常数 τ 无关，当 θ 一定时仅与 λ 的取值有关。

例 4.4-1 假定控制对象的模型是精确的，现在取三个不同的控制对象来比较新的 PID 控制器与其他的 PID 控制器的性能，其他的 PID 控制器的形式为：

\[ C = K_c \left( 1 + \frac{1}{T_s} + \frac{T_{p1}s}{0.1T_{p1}s + 1} \right) \] (4.4-5)

三个不同的控制对象是：

- \( A: \frac{e^{-0.2s}}{s + 1} \),  \( B: \frac{e^{-2s}}{s + 1} \),  \( C: \frac{e^{-20s}}{s + 1} \)

其中 A 和 B 来自 Hang et al. (1991) 的论文。参照前面介绍的方法，得到表 4.4-1 的设计参数。相应的响应曲线见图 4.4-4 至图 4.4-6。
图 4.4-3 λ与系统性能的关系

表 4.4-1 不同设计方法得到的 PID 参数

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-N</td>
<td>$K_c=5.10$</td>
<td>$K_c=0.91$</td>
<td>$K_c=0.60$</td>
</tr>
<tr>
<td></td>
<td>$T_l=0.37$</td>
<td>$T_l=2.75$</td>
<td>$T_l=10.0$</td>
</tr>
<tr>
<td></td>
<td>$T_p=0.09$</td>
<td>$T_p=0.68$</td>
<td>$T_p=2.50$</td>
</tr>
<tr>
<td>C-C</td>
<td>$K_c=6.92$</td>
<td>$K_c=0.91$</td>
<td>$K_c=0.34$</td>
</tr>
<tr>
<td></td>
<td>$T_l=0.45$</td>
<td>$T_l=3.03$</td>
<td>$T_l=19.2$</td>
</tr>
<tr>
<td></td>
<td>$T_p=0.07$</td>
<td>$T_p=0.53$</td>
<td>$T_p=1.48$</td>
</tr>
<tr>
<td>RZN</td>
<td>$K_c=5.10$</td>
<td>$K_c=0.91$</td>
<td>$K_c=0.60$</td>
</tr>
<tr>
<td></td>
<td>$T_l=0.37$</td>
<td>$T_l=1.86$</td>
<td>$T_l=4.40$</td>
</tr>
<tr>
<td></td>
<td>$T_p=0.09$</td>
<td>$T_p=0.68$</td>
<td>$T_p=2.50$</td>
</tr>
<tr>
<td></td>
<td>$\beta=0.28$</td>
<td>$\beta=0.79$</td>
<td>$\beta=0.68$</td>
</tr>
<tr>
<td>NEW</td>
<td>$\lambda=0.40$</td>
<td>$\lambda=0.40$</td>
<td>$\lambda=0.40$</td>
</tr>
</tbody>
</table>

图 3 是 $\theta/\tau=0.2$ 时的情形, 系统相对容易控制, 从图中看到 Z-N 法和 C-C 法的超调均很大, 调节时间也比较长; RZN 法的超调合适, 但上升时间较长; 本文法上升时间较 Z-N 法和 C-C 法稍慢, 但超调合适, 调节时间
图 4.4-4 对象 A 的阶跃响应

图 4.4-5 对象 B 的阶跃响应

短。图 4.4-4 是 $\theta/\tau=2$ 时的情形，从超调来看四种方法相近，但是传统方法的振荡幅度较大，本文方法的响应很平稳；图 4.4-5 是 $\theta/\tau=20$ 时的情形。不同方法之间差别比较大。RZN 法已经开始发散；Z-N 法振荡的较厉害；C-C 法的上升时间变的非常慢；本文方法依然保持着原有的响应形状。根据前面的分析可知，由本文控制器决定的系统的响应形状与 $\tau$ 无关，仅与 $\lambda$ 和 $\theta$ 有关，当 $\lambda$ 和 $\theta$ 的关系确定后，就只与 $\theta$ 有关了，这与仿真结果吻合得很好。
在相应的时间比例下，三个对象的响应曲线形状完全相同，只是情形超调都是 17% 左右，系统都是经过一个振荡周期后趋于平稳。总的来讲，本文方法的控制效果快速而且平稳。

众所周知，实际控制问题的要求经常表述为超调和调节时间，然而，无论是传统的 H\(_2\) 控制还是最近发展起来的 H\(_\infty\)控制，都无法直接地按指定的性能设计控制器，而我们提出的设计方法则可以满足这个要求，譬如说要求的标称性能为 5% 超调，则取 \(\lambda = 0.5\delta\) 即可达到。因此本文提出的控制器整定方法要比具有四个参数的 RZ\(_N\) 法优越得多。

本文的控制器是通过优化方法得到的，所以系统的超调和上升时间互相制约，适当选择 \(\lambda\) 就能得到超调和调节时间的最佳折衷。由于 \(\lambda\) 与系统性能的关系是单调的，这给现场整定带来了很大方便。

3. 在用于高阶对象时，控制器设计所需的三个参数 \(K, \tau\) 和 \(\phi\) 是通过模型降阶得到的。上边关于参数 \(\lambda\) 和系统性能及鲁棒性的关系的定性分析同样适用于高阶对象，只是模型降阶在 Padé 近似的基础上进一步引人了不确定性，它们之间不再具有图 4.4-3 所示的定量关系。

例 4.4-2 考虑 Hang et al. (1991) 提出的另一个控制对象：

\[
G(s) = \frac{e^{-\theta s}}{(\zeta s + 1)^2}
\]  (4.4-6)

其中 \(\theta = 0.4, \zeta = 1\)。按 Z-N 法设计得到的参数为
\[ K_c = 3.43, \quad T_i = 1.44, \quad T_d = 0.36 \]

按 C-C 法设计得到的参数为
\[ K_c = 3.10, \quad T_i = 1.51, \quad T_d = 0.26 \]

RZN 法取 \( \beta = 0.45 \)。本文方法仍然取 \( \lambda = 0.4 \)。几种方法得到的阶跃给定值和阶跃干扰响应曲线如图 4.4-7 所示。因为 \( d(t) \) 对 \( y(t) \) 的影响和 \( r(t) \) 对 \( y(t) \) 的影响是类似的，所以这里的阶跃干扰加在控制对象输入端。可以看出，Z-N 法和 C-C 法的超调较大，RZN 法的上升时间较慢；本文方法为得到合适的超调和鲁棒性，在性能上作出了一定让步。总的来说几种方法的控制效果都还可以。现在假设在估计 \( \theta \) 时有 50%的误差，在估计 \( \xi \) 时有 40%的误差，控制对象的纯滞后时间和时常数均变为 0.6。这时 Z-N 法和 RZN 法都不能使用了，C-C 法也显著地厉害。而本文方法尚能工作（图 4.4-8）。重新调节控制器的参数，取 \( \lambda = 0.7 \) ，系统的上升时间有些变慢，但是鲁棒性相对增强，总的控制效果得到了改善。

![图 4.4-7 标称系统的响应](image)

4.5 基于 Taylor 展开的 \( H_\infty \) PID 控制器

前面的设计是在 Pade 近似的基础上进行的，这节要讨论基于 Taylor 展开的 \( H_\infty \) PID 控制器设计。虽然 Taylor 展开的精度较 Pade 近似低，也没有保持纯滞后后的单位增益特性，但是用它来设计控制器有如下的优点：

\[ \cdot 51 \cdot \]
(1) 利用 Taylor 展开可以对更一般的二阶纯滞后控制对象设计 PID 控制器。

(2) 当纯滞后不是很大时, 利用 Taylor 展开设计的 PID 控制器也具有很好的性能, 这有助于进一步理解 PID 控制的本质。

假定控制对象为
\[ G(s) = \frac{K e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} \quad (4.5-1) \]

采用一阶 Taylor 展开逼近纯滞后项
\[ e^{-\theta s} = 1 - \theta s \]

则近似的控制对象为
\[ G(s) = \frac{K (1 - \theta s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \quad (4.5-2) \]

取性能指标为 \( \min \| W(s)S(s) \|_\infty \) 系统输入为单位阶跃信号，根据渐近跟踪要求有
\[ \lim_{t \to 0} (1 - G(s)Q(s)) = 0 \quad (4.5-3) \]

由最大模定理可知对所有的 \( Q(s) \) 成立
\[ \| W(s)S(s) \|_\infty = \| W(s)(1 - G(s)Q(s)) \|_\infty \geq \| W(s) \| \| \frac{1}{Q} \| \]

对等式左边取极小，有
解上述方程可以得到唯一最优的 \( Q(s) \) 为

\[
Q_m(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{K}
\]  

(4.5-6)

引入低通滤波器 \( J = \frac{1}{(\lambda s + 1)^2}, \lambda > 0 \) 对 \( Q_m(s) \) 进行衰减，以获得正则的 \( Q(s) \)，有

\[
Q(s) = Q_m(s)J(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{K(\lambda s + 1)^2}
\]  

(4.5-7)

当 \( \lambda \) 趋于零时 \( Q(s) \) 趋向于最优。因此

\[
R(s) = \lim_{\lambda \to 0} Q(s)
\]

\[
= \frac{1}{K} \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{\lambda^2 s^2 + 2\lambda s}
\]  

(4.5-8)

这是一只 PID 控制器，与实际的 PID 控制器

\[
K_c(1 + \frac{1}{T_i s} + T_d s) \frac{1}{T_f s + 1}
\]

相比较，得到它的参数是

\[
T_v = \frac{\lambda}{2}, \quad T_i = \frac{\tau_1 + \tau_2}{};
\]

\[
T_d = \frac{\tau_1 \tau_2}{\tau_1 + \tau_2}, \quad K_c = \frac{\tau_1 + \tau_2}{2K\lambda}
\]  

(4.5-9)

若将 \( (G_m(s) - G_m(s)) \) 合并到控制器 \( R(s) \) 中，则传统的 Smith 预估器结构就变成了一个单位反馈控制回路，回路中的控制器是

\[
C(s) = \frac{R(s)}{1 + (G_m(s) - G_m(s))R(s)}
\]

\[
= \frac{1}{K} \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{\lambda^2 s^2 + (2\lambda + \theta) s}
\]  

(4.5-10)

这也是一只 PID 控制器，它的参数是

\[
T_v = \frac{\lambda^2}{2\lambda + \theta}, \quad T_i = \frac{\tau_1 + \tau_2}{2\lambda + \theta};
\]

\[
T_d = \frac{\tau_1 \tau_2}{\tau_1 + \tau_2}, \quad K_c = \frac{\tau_1 + \tau_2}{K(2\lambda + \theta)}
\]  

(4.5-11)

对过程控制推荐 \( \lambda \) 的取值在 \( 0.2\theta - 1.2\theta \) 之间。
4.6 小结

本章在 $H_\infty$ 控制理论的基础上提出了一种关于 PID 控制器的解析设计方法，设计过程简单并且容易理解，其结果是传统技术所无法得到的。这种方法在新的理论和传统的设计方法之间提供了一个很好的过渡，由新的理论可以解析地得到控制，控制器的参数又与系统的时域响应特征有着直接的联系。当我们不知道确切的不确定性界时或者系统的不确定性随时间发生变化时，系统的鲁棒性可以通过一个参数方便地调节。

根据本章提出的设计方法，我们证明了 PID 控制器与 Smith 预估器的等价关系，在标称情况下这种等价并不是严格的，因为我们对纯滞后项进行了有理逼近，但是在存在不确定性的系统中这种等价是足够严格的。在后面一章的讨论中，我们还将从 $H_\infty$ 控制理论出发证明 PID 控制器与 Smith 预估器的这种等价关系。

本章的讨论还表明，按 Z-N 法和本文方法整定的 PID 控制器可以用于大纯滞后对象的控制。这一结论可以由两个方面说明。一方面，在标称系统中，这两种控制的上升时间与滞后时间相比是可以接受的。另一方面，对不确定控制对象 $G(s)$，大的纯滞后总是会导致更差的性能，不仅 PID 控制器是这样，其它的控制器也是这样。
第五章 自衡对象 $H_2$PID 控制

在前面一章，我们从 $H_\infty$最优控制理论出发，提出一种 PID 控制器解析设计方法，通过采用有理函数逼近纯滞后获得了 PID 控制器与 Smith 预估器等价的结论。这种方法的突出优点是：

(1) 与传统的 PID 控制器整定方法相比，新方法的整定规则是解析得到的，控制系统的标称性能也可以定量地估计。

(2) 与传统的鲁棒控制器设计方法相比，新的设计方法不依赖于准确的不确定性，控制系统的鲁棒性可以通过一个参数方便地调整。

那么这种控制器是不是唯一的呢？

首先，控制器设计的基础是 $H_\infty$最优控制理论，$H_\infty$最优控制理论的出发点是使一族能量有限输入产生的“最坏”误差最小化，即

$$\min_{\sup_{t \geq 0}} \| e(t) \|_2$$

或者等价地最小化加权灵敏度的 $\infty$范数：

$$\min \| W(s)S(s) \|_\infty$$

不同的理论出发点不同，提供的设计方法也不同，所以采用其它的设计方法可能会有不同的结果。其次，在控制器设计过程中，由于正则性的要求引入了一个滤波器 $J(s)$，如果滤波器的结构不同，得到的控制器自然也不相同。

根据上述想法，我们发展了一种基于 $H_2$最优控制理论的设计方法。$H_2$最优控制理论的出发点是使某一已知输入产生的平方误差积分最小化，即

$$\min \| e \|_2$$

或者等价地最小化加权灵敏度的 2 范数：

$$\min \| W(s)S(s) \|_2$$

这一方法在时域叫做线性二次最优控制方法，在频域则称为 $H_2$最优控制方法。

一般认为，$H_2$最优控制方法的鲁棒性很差，因此，迄今为止这种方法在工业过程控制中应用的不多。我们将提供一种解析设计方法，按这种方法设计的 PID 控制器与用 $H_\infty$方法设计的 PID 控制器非常类似，可以获得任意好的鲁棒性。如果控制对象可用一阶惯性加纯滞后模型来表示，那么 $H_2$PID
控制器与 Dahlin 控制器是等价的，对其进行离散化后就是 Dahlin 控制器。进一步可以证明它与 Smith 预估器也是等价的。

5.1 $H_2$PID 控制器设计

考察图 4.2-3 所示的控制系统，假定控制对象的模型为

$$G_\alpha(s) = \frac{Ke^{-\alpha \tau}}{\tau s + 1}, \quad G_{\alpha s}(s) = \frac{K}{\tau s + 1}$$

（5.1-1）

已知该结构与 Youla 参数化之间的关系为

$$Q(s) = \frac{R(s)}{1 + G_{\alpha s}(s)R(s)}$$

（5.1-2）

根据 $H_2$ 最优控制理论，取控制系统性能的优化指标为 $\min \| W(s)S(s) \|_2$，这里 $W(s)$ 是权函数，应选择为使系统输入的 $2$ 范数标定化。

由于 $e^{-\alpha \tau}$ 是个难以解析处理的环节，利用 $1/1$Pade 公式对它进行展开，有

$$G_\alpha(s) = K \frac{1 - \frac{1}{2} s}{(\tau s + 1)(1 + \frac{1}{2} s)}$$

（5.1-3）

我们先利用近似模型求出控制器，然后再用这个控制器去控制近似前的控制对象。如果我们总是能得到精确的模型，那么采用 Padé 近似法后残差的意义是很有限的，但是在工业过程中，实际上模型不一致是普遍存在的，而且这种不确定性要远远大于 Padé 近似所引入的误差，所以这种近似是有充分理由的，它引入的误差可以视为系统不确定性的一部分。

确定系统输入为单位阶跃信号，选取 $W(s) = 1/s$。$W(s)$ 有一个极点在虚轴上，为了保证 $W(s)S(s)$ 的 $2$ 范数有界，要求有约束

$$\lim_{s \to 0} 1 - G(s)Q(s) = 0$$

即

$$Q(0) = \frac{1}{G_\alpha(0)} = \frac{1}{K}$$

（5.1-5）

满足上式的所有稳定的 $Q(s)$ 的集合是

$$Q(s) = \frac{1}{K} + sQ_1(s), \quad Q, \text{稳定}$$

（5.1-6）
所以

\[
\| W(s)S(s) \|_2^2 \\
= \left\| W(s) \left[ 1 - G(s) \left( \frac{1}{K} + \sigma Q_1(s) \right) \right] \right\|_2^2 \\
= \left\| \frac{\theta \tau}{2s} + (\theta + \tau) \frac{\theta \tau}{2s} + 1 \frac{\theta}{2s} \frac{K(1 - \frac{\theta}{2s})}{\tau s + 1} \frac{K(1 - \frac{\theta}{2s})}{\tau s + 1} \frac{\theta}{2s} Q_1(s) \right\|_2^2 \\
= \left\| \frac{1 - \frac{\theta}{2s}}{1 + \frac{\theta}{2s}} \left( \frac{\theta \tau}{2s} + (\theta + \tau) - \frac{K}{\tau s + 1} Q_1(s) \right) \right\|_2^2 \\
= \left\| \frac{\theta \tau}{2s} + (\theta + \tau) \frac{\theta \tau}{2s} + 1 \frac{\theta}{2s} \frac{K}{\tau s + 1} Q_1(s) \right\|_2^2 \\
\]

令 \( L_2 \) 表示所有严格正则的稳定的传递函数。\( H_2 \) 是 \( L_2 \) 的子集，在 \( Re s > 0 \) 解析；\( H_2^\perp \) 在 \( Re s \leq 0 \) 解析，且 \( H_2 + H_2^\perp = L_2 \)。则 \( L_2 \) 里的每一个函数 \( F(s) \) 都可以表示为

\[ F(s) = F_1(s) + F_2(s), F_1(s) \in H_2, F_2(s) \in H_2^\perp \]

定理 5.2.1：如果 \( F_1(s) \in H_2, F_2(s) \in H_2^\perp \)，那么

\[ \| F_1(s) + F_2(s) \|_2^2 = \| F_1(s) \|_2^2 + \| F_2(s) \|_2^2 \]  \quad (5.1-7)

因此有

\[
\| W(s)S(s) \|_2^2 \\
= \left\| \frac{\theta}{1 - \frac{\theta}{2s} \frac{\theta \tau}{2s} + 1 - \frac{\theta}{\tau s + 1} Q_1(s) \right\|_2^2 \\
= \left\| \frac{\theta}{1 - \frac{\theta}{2s}} \right\|_2^2 + \left\| \frac{\theta \tau}{\tau s + 1} - \frac{\theta}{\tau s + 1} Q_1(s) \right\|_2^2 \]  \quad (5.1-8)

对 \( \| W(s)S(s) \|_2 \) 取极小，唯一最优的 \( Q_1(s) \) 为

\[ Q_{\text{opt}}(s) = \frac{\tau}{K} \]  \quad (5.1-9)

所以

\[ Q_{\text{opt}}(s) = \frac{\tau s + 1}{K} \]  \quad (5.1-10)
根据 Youla 参数化，\( Q(s) \) 应该是稳定正则的，为此引入低通滤波器

\[
J(s) = \frac{1}{\lambda s + 1}, \lambda > 0
\]

对 \( Q_m(s) \) 进行衰减，以获得合适的 \( Q(s) \)：

\[
Q(s) = Q_m(s) J(s) = \frac{\tau s + 1}{K(\lambda s + 1)} \tag{5.1-11}
\]

经过简单的计算可以得到

\[
R(s) = \frac{Q(s)}{1 - G_m(s) Q(s)} = \frac{1}{K} \frac{\tau s + 1}{\lambda s} \tag{5.1-12}
\]

这是一个 PI 形式的控制器。与 \( \text{H}_\infty \) 设计方法比较可以看出，\( \text{H}_\infty \) 方法设计的控制器抵消了控制对象所有的主导极点，而 \( \text{H}_2 \) 方法设计的控制器只抵消了控制对象外部函数的极点。

滤波器的选择不是唯一的，如果我们把滤波器选作

\[
J(s) = \frac{\tau s + 1}{(\lambda s + 1)^2}, \lambda > 0
\]

则 \( \text{H}_2 \) 方法设计的控制器与 \( \text{H}_\infty \) 方法设计的控制器完全相同。

5.2 \( \text{H}_2 \) PID 控制器与 Smith 预估器的关系

在传统观念中，PID 控制器与 Smith 预估器是两种截然不同的控制器，Smith 预估器可以很好地用于大纯滞后对象的控制，而 PID 控制器则不能。我们将证明，适当地调节 PID 控制器也能达到 Smith 预估器具有的控制效果，因为二者在本质上是等同的。

根据单位反馈控制回路的控制器 \( C(s) \) 与 Smith 预估控制器 \( R(s) \) 的联系，容易求得

\[
C(s) = \frac{R(s)}{1 + (G_m(s) - G_m(s))R(s)} = \frac{1}{K} \frac{(\tau s + 1)(1 + \frac{\theta}{s})}{\lambda s^2 + (\lambda + \theta)s} \tag{5.2-1}
\]

与 PID 控制器

\[
\ldots
\]
\[
C = K_c\left(1 + \frac{1}{T_i s + T_i} + \frac{1}{T_r s + 1}\right)
\]

比较, 得到的参数是

\[
T_r = \frac{\theta}{2(\lambda + \theta)}, \quad T_i = \tau + \frac{\theta}{2},
\]

\[
T_o = \frac{\theta}{2T_i}, \quad K_c = \frac{T_c}{K(\lambda + \theta)}
\] (5.2-2)

与 PID 控制器

\[
C = K_c\left(1 + \frac{1}{T_i s + T_i} + \frac{T_{o}s}{T_r s + 1}\right)
\]

比较, 得到的参数是

\[
T_r = \frac{\theta}{2(\lambda + \theta)}, \quad T_i = \tau + \frac{\theta}{2} - T_r,
\]

\[
T_o = \frac{\theta}{2T_i} - T_r, \quad K_c = \frac{T_c}{K(\lambda + \theta)}
\] (5.2-3)

与 PID 控制器

\[
C = K_c\left(1 + \frac{1}{T_i s + T_i} + \frac{T_{o}s}{T_r s + 1}\right)
\]

比较, 得到的参数是

\[
T_r = \frac{\theta}{2(\lambda + \theta)}, \quad T_i = \tau(或 \frac{\theta}{2}),
\]

\[
T_o = \frac{\theta}{2}(或 \tau), \quad K_c = \frac{T_c}{K(\lambda + \theta)}
\] (5.2-4)

所以, 我们又从 \(H_2\) 最优控制的角度证明了 PID 控制器 Smith 预估器的等价性。

在常规的 PID 控制器中, \(T_r\) 一般是固定的, 取为 0.1 \(T_i\), 而 \(H_\infty\) 和 \(H_2\) 方法设计的 PID 控制器的特殊之处在于它的 \(T_r\) 不是一个固定量。如果在控制系统中已经采用了常规 PID 控制器, 那么也可以在解析整定公式中固定 \(T_r\), 用得到的近似公式去整定, 控制效果是类似的。

### 5.3 \(H_2\)PID 控制器和 Dahlin 控制器的关系

在过程控制中, Dahlin (Dahlin, 1968) 控制器是应用较多的一种控制器,它的优点是易于设计, 系统动态响应可由一个参数来调节, 这给实际应用带
来很大方便。Dahlin 控制器设计的基本出发点是选择一个具有纯滞后的一阶非周期特性 $e^{-\lambda s}$ 作为所需的闭环特性，然后据此来推导控制器。为了能解析地得到控制器，推导通常是在离散域中进行的，因为在离散域中，滞后表现为有限维的函数（离散化过程实际上相当于有理近似）。我们将证明，本文提出的连续域 PID 控制器和 Dahlin 控制器在本质上是相同的。

考虑图 4.2-3 所示的控制结构。如果模型是简化后的，则系统的闭环传递函数为

$$T(s) = G(s)Q(s) = \frac{1 - \frac{0}{\lambda s}}{\lambda s + 1} \frac{1 - \frac{0}{\frac{\theta}{2} s}}{1 + \frac{\theta}{2} s}$$

(5.3-1)

而 $1 - \frac{0}{\frac{\theta}{2} s}$ 则是由 $e^{-\theta s}$ 经 Pade 近似得到的。因此将本文的控制器进行离散化后就可得到 Dahlin 控制器。这意味着 Dahlin 控制器也可以由 PID 控制器来实现。

滤波器中的参数 $\lambda$ 与 Dahlin 控制器中的可调参数是一致的。当不存在模型误差时，$\lambda$ 可用来调整系统闭环响应的形状；当存在模型误差时，增加 $\lambda$ 可提高系统的鲁棒性。$\lambda$ 的取值一般在 0-1.00 之间，推荐 $\lambda$ 取 0.50 左右。

![图 5.3-1 钢带厚度控制系统](image)

图 5.3-1 钢带厚度控制系统

例 5.4-1 考虑一个钢带厚度控制系统（王永初和范秀珍，1986；Ross，1977）。钢带厚度是轧钢过程的重要指标。来自加热炉的钢坯，首先通过进料辊夹紧后推入行星轧机进行粗轧，行星轧机的压下量是事先调整好的。粗轧后的钢坯变成厚钢带，再经张力辊，由被控制的平整机精轧成符合要求的钢带（图 5.3-1）。这种控制对象表现出典型的纯滞后特性。

*60*
已知测厚仪安装位置同平整机的距离为 4.9 米，带移动速度为 0.7 米/秒，压下量调节机构的时间常数约为 3 秒，因此控制对象的传递函数可以写成

$$G(s) = \frac{Ka^{-7s}}{3s + 1}$$

当采用 PID 控制器控制时，利用 R-C 法整定的控制器参数为

$$KK_c = 0.51 \quad T_i = 14.0 \quad T_p = 3.50$$

按 C-C 法设计的控制器参数是

$$KK_c = 0.85 \quad T_i = 10.7 \quad T_p = 1.77$$

本文方法则取 \( \lambda = 0.3\theta \)。系统的阶跃给定值和阶跃干扰响应如图 5.3-2 所示，本文控制器具有较好的标称响应。

![图 5.3-2 标称系统的响应](image)

现在假设模型的三个参数分别发生了 10%的扰动，其中 \( K \) 增大，\( \tau \) 减小，\( \theta \) 增大，几种控制器的响应如图 5.3-3 所示，本文控制器具有更好的鲁棒性。在本文的控制中，可调参数 \( \lambda \) 与系统的响应速度和鲁棒性有着直接的联系，小的 \( \lambda \) 对应着快的响应和差的鲁棒性；大的 \( \lambda \) 对应着慢的响应和好的鲁棒性（图 5.3-4）。换句话说，\( \lambda \) 表示了系统性能和鲁棒性之间的折衷。

选择式 (5.2-1) 所示的 PID 控制器整定公式，在控制器中固定 \( T_r \)，取

$$T_r = 0.1T_p$$

那么控制系统的标称响应如图 5.3-5 所示，效果也很好。这时，如果要调节系统的响应，只要调整控制器增益即可。
图 5.3-3  沉动系统的响应

图 5.3-4  不同 $\lambda$ 时沉动系统的响应

5.4 系统稳定性和性能

在前面介绍的方法中，控制器的设计是通过参数化来进行的，并不包括系统稳定性分析过程。但作为时滞系统设计的基本问题，我们总是希望知道时滞对系统稳定性产生什么样的影响。讨论这个问题的文献很多，但是
图 5.3-5 固定 $T_r$ 的系统响应

恰恰是在这样一个重要的理论问题上，目前还存在着一些值得讨论的地方。

许多文献认为，滞后的存在降低了系统的稳定性，并且随着滞后的增大系统越来越不容易保持稳定。但是在本章和前一章的设计实例中我们发现，随着滞后的增大，控制系统并不总是趋向于不稳定。由此引出一个疑问，即滞后的增大会不会引起系统的不稳定？

事实上，滞后的存在并不一定影响控制系统的稳定性，这取决于控制器的设计。按本文方法设计的控制器总是能保证系统的稳定。按传统方法整定的 PID 控制器一般也能保持系统的稳定，只是对滞后的响应各不相同；RZM 法和 Z-N 法对欠调压后的响应较复杂，大致地说，当滞后与时间常数接近时，系统超调较小，当滞后很小或很大时系统超调较大；C-C 法和 R-C 法整定的控制器，随着滞后的增大系统响应越来越慢。

就其控制而言，滞后的存在使控制系统的性能变差，并且随着滞后的增大系统的性能越来越差。不论是本文提出的控制器，还是传统方法整定的控制器都是如此。那么有没有办法进一步优化控制器的性能呢？一个自然的想法是先根据本文提出的方法确定控制器的参数，然后调整参数，按某种积分性能准则（如 ISE, ITAE 或 IAE）再次优化控制器的性能。看起来这种想法是符合逻辑的，但是有三个原因使我们不推荐这样做：

（1）比较麻烦。

（2）控制器参数已经是最优，再次优化不会对性能有多大改进。
(3) 再次优化的参数无法调整，不能满足鲁棒性的要求。

进一步的研究表明，尽管传统的控制器整定方法是经验规则，但是当滞后不太大时控制器已经拥有很好的性能，所以在此基础上按积分性能准则再次优化的意义也是非常有限的。

$\text{H}_\infty$方法设计的PID控制器可以定量估计系统标称性能，$\text{H}_2$方法设计的PID控制器也有同样的特点，如图5.4-1所示。

![图5.4-1 $\lambda$与系统性能的关系](image)

5.5 基于Taylor展开的控制器设计

假定控制系统的闭环传递函数为$T(s)$，干扰传递函数为$S(s)$，则系统的输出为

$$
Y(s) = S(s)d(s) + T(s)r(s)
= (1 - G(s)Q(s))d(s) + G(s)Q(s)r(s)
$$

在传统的Smith预估器中

$$
G(s) = \frac{K e^{-\xi \tau}}{(\tau_1 s + 1)(\tau_2 s + 1)}
$$

采用一阶Taylor展开逼近纯滞后项，系统的模型变为

$$
G(s) = \frac{K(1 - \beta \theta)}{(\tau_1 s + 1)(\tau_2 s + 1)}
$$

这时就可以使用 $\text{H}_2$ 优化设计方法了。它的优化指标表示为 $\min_n \| W(s)S$
(s) \parallel W(s) S(s) \parallel_2^2, 若选取系统输入为单位阶跃信号, 则 \( W(s) = 1/s \) 为了保证 \( W(s) S(s) \) 的 2 范数有界, 要求有约束
\[
\lim_{s \to 0} (1 - G(s) Q(s)) = 0 \quad (5.5-4)
\]
在标称情况下有
\[
Q(0) = \frac{1}{G(0)} = \frac{1}{K} \quad (5.5-5)
\]
满足上式的所有稳定的 \( Q(s) \) 的集合是
\[
Q(s) = \frac{1}{K} + \omega Q_1(s), \quad Q_1(s) \text{ 稳定} \quad (5.5-6)
\]
所以
\[
\parallel W(s) S(s) \parallel_2^2
= \left\| W(s) \left[ 1 - G(s) \left( \frac{1}{K} + \omega Q_1(s) \right) \right] \right\|_2^2
= \left\| \frac{\tau_1 \tau_2 s + \tau_1 + \tau_2 + \theta}{(\tau_1 s + 1)(\tau_2 s + 1)} - \frac{K(1 - \theta s) Q_1(s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \right\|_2^2
= \left\| \frac{1 - \theta s}{1 + \theta s} \left[ \frac{\tau_1 \tau_2 s + \tau_1 + \tau_2 + \theta}{(\tau_1 s + 1)(\tau_2 s + 1)} - \frac{K(1 + \theta s) Q_1(s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \right] \right\|_2^2
= \left\| \frac{\theta(1 + \theta s)}{1 - \theta s} + \frac{\tau_1 \tau_2 s + \tau_1 + \tau_2 + \theta}{(\tau_1 s + 1)(\tau_2 s + 1)} - \frac{K(1 + \theta s) Q_1(s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \right\|_2^2
\]
由复变函数的基本结论可以对上式进行正交展开, 因此有
\[
\parallel W(s) S(s) \parallel_2^2
= \left\| \frac{\theta(1 + \theta s)}{1 - \theta s} \right\|_2^2 + \left\| \frac{\tau_1 \tau_2 s + \tau_1 + \tau_2 + \theta}{(\tau_1 s + 1)(\tau_2 s + 1)} - \frac{K(1 + \theta s) Q_1(s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \right\|_2^2
\]
对 \( \parallel W(s) S(s) \parallel_2 \) 取极小, 唯一最优的 \( Q_1(s) \) 为
\[
Q_{1m}(s) = \frac{\tau_1 \tau_2 s + \tau_1 + \tau_2}{K} \quad (5.5-8)
\]
所以
\[
Q_m(s) = \frac{\tau_1 s + 1)(\tau_2 s + 1)}{K} \quad (5.5-9)
\]
引入低通滤波器
\[
J = \frac{1}{(\lambda s + 1)^2}, \lambda > 0
\]
对 \( Q_m(s) \) 进行衰减, 以获得正则的 \( Q(s) \), 有

\[\text{65}\]
\[
Q = Q_{\infty}J = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{K(\lambda s + 1)^2}
\]  \hspace{1cm} (5.5-10)

当 \lambda 趋向于零时 \( \tilde{Q}(s) \) 趋向于最优。因此

\[
R(s) = \frac{Q(s)}{1 - G_{\infty}(s)Q(s)}
\]

\[
= \frac{1}{K} \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{\lambda s^2 + 2\lambda s}
\]  \hspace{1cm} (5.5-11)

我们发现，本节得到的控制器与 \( H_\infty \) 最优控制理论得到的控制器完全相同，这表明一阶 Taylor 展开引入的误差抵消了 \( H_\infty \) 和 \( H_\infty \) 设计方法间的差别。

图 5.5-1  标称系统的响应

例 5.5-1  Giles and Bartley (1977) 在研究 Smith 预估器时给出了这样一个控制对象

\[
G(s) = \frac{1.0e^{-15s}}{(10s + 1)(5s + 1)}
\]

按传统方法整定的 Smith 预估控制器参数为 \( K_c = 1.1, T_l = 13.5 \)，按本文方法设计的控制器的参数是 \( \lambda = 0.70 \)，两者的标称响应如图 5.5-1 所示，传统的 Smith 预估器具有较好的标称性能。

我们知道 Smith 预估器对控制对象增益和纯滞后变化比较敏感，现假设控制对象增益发生了 50% 的变化，\( K = 1.5 \)，纯滞后发生了 25% 的变化，\( \theta = 20 \)，系统响应如图 5.5-2 所示。我们发现两种控制器的鲁棒性都比较好，但本文控制器的鲁棒性更好些。

* 66 *
5.6 控制器设计方法的比较

任何一种新的控制器设计方法提出以后，都要与成熟的传统控制器设计方法相比较，以说明新方法的优越之处。如何比较不同的设计方法，这不仅仅是实践的要求，也是个理论问题。遗憾的是迄今为止尚无专门的文献讨论这个问题。

因为没有统一的标准，所以不同方法之间的比较可能是没有意义的。严格的统一标准可能在很长的时间内也不会出现，但是借助于现有的理论应当可以找到一些公认的标准原则。近年兴起的标准问题（Alfriend, 1992）求解在一定程度上体现了这种倾向，不过这类问题通常不是针对过程控制理论的。从某种意义上来说，过程控制中的标准问题可能是非常简单的，一般只要考虑一阶自衡控制对象

\[ G(s) = \frac{Ke^{\delta s}}{Ts + 1} \]

和一阶非自衡控制对象

\[ G(s) = \frac{e^{\delta s}}{Ts} \]
的控制器设计即可。

过程控制理论的一个显著特点就是与控制实践紧密相关。现在让我们来看看实际的控制对象对控制器有什么样的要求。

在过程控制中一般不希望超调大于50%，多大的超调比较合适取决于控制对象。某些控制对象对超调有严格的要求。例如，在化工生产过程中，被控制的量可能是温度或压力，如果温度或压力超过设备的承受能力，就会发生事故；另外一些控制对象，如造纸生产过程，可能对超调没有严格要求，但是大的超调意味着控制误差的增大，这常常会导致控制变量的饱和。

上升时间的快慢从一个方面反映了给定值跟踪性能的好坏。在过程控制中要求上升时间尽量地快，但是由于超调的系统中，上升时间与超调经常是互相约束的，通常上升时间越快，超调越大。

调节时间反映了系统动态过程的快慢。它从另一个方面反映了给定值跟踪性能的好坏。如果控制器的性能是用跟踪误差积分的某种度量来说明的，例如ISE准则，那么在同样的超调下，调节时间越短，ISE越小，控制器的性能越好，所以通常希望调节时间越短越好。调节时间的变化与超调和上升时间是相互联系的。在有超调的系统中，一般超调越大，上升时间越快，调节时间越短，在无超调的系统中，上升时间越快则调节时间越短。

在一般的文献中，经常把过程控制系统归结为所谓定值控制系统，就是指这类系统必须有良好的抗干扰特性。因为干扰对输出的影响与给定值对跟踪误差的影响是相同的，所以抗干扰性能与给定值跟踪性能是一致的。

那么什么样的控制器是好的呢?

本文认为，对过程控制，好的控制器应具有合适的超调和快速平稳的响应，并且容易调节。我们的研究表明，这样的控制器自然具有较好的鲁棒性。

一种错误的理解是好的控制器必然具有非常好的性能，譬如最小的ISE。事实上恰恰相反，好的控制器往往性能较差，或者说具有相对较差的给定值跟踪能力和干扰抑制能力。为什么会有这样的结论呢？鲁棒控制理论为深入理解这个问题提供了指导思想。

在鲁棒控制理论中把控制器性能分为标称性能、鲁棒稳定性和鲁棒性能。鲁棒性能实际上包括了标称性能和鲁棒稳定性两个方面的要求，它们通过

\[ S(s) + T(s) = 1 \]
和
\[ \| W(s)S(s) \| + \| A(s)T(s) \|_{\infty} < 1 \]
相互制约，所以一个方面的高要求往往会导致另一个方面的让步。

按以上分析，本文提出的设计方法要比传统的设计方法好。它不但提供了快速平稳的响应，而且系统的鲁棒性能可以通过一个参数在线地调整。特别地，它指出了控制器的参数在多大程度上逼近最优解，揭示了控制器参数对系统鲁棒性能的影响，这对指导 PID 控制器的整定具有重要意义。

以此作为指导，对传统设计方法进行进一步的研究，我们发现，当控制对象的纯滞后不太大时，传统的设计方法已经提供了非常好的标称性能，它的缺点在于对控制器参数和系统鲁棒性能之间的关系缺乏深入的阐述。譬如，利用 Z-N 法对控制对象模型整定的控制器，其标称性能很好，可是超调太大，鲁棒性也较差。一种简单的解决方法是减小控制器的增益，这样就可以牺牲标称性能，获得小的超调和好的鲁棒性。由此引出的问题是，这种性能的牺牲是不是必要的，或者说，是不是有更好的 PID 控制器设计方法，可以不牺牲性能就得到小的超调和好的鲁棒性? 我们的研究表明，这种性能的牺牲是不必要的。

5.7 小结

本章从 $H_2$ 最优控制理论出发讨论了 PID 控制器设计问题，得到的控制器与 $H_\infty$ PID 控制器具有相同的特点。本章的主要贡献是，证明了 Smith 预估器、Dahlin 控制器和 PID 控制器三者之间的等价关系，从而使控制器的实现更加简单有效。

在传统的设计方法中，给定值响应与干扰抑制问题是分别考虑的，本章的研究表明，在单自由度控制系统中二者是等价的。

从理论上讲，一维的 PID 控制器只是传统的三 (或四) 维 PID 控制器的特殊情况，本文研究的意义在于给出了更有效的整定规则，从理论上说明了如何整定控制器才能具有更好的控制效果。

Wong and Seborg (1986) and Wellons and Edgar (1987) discuss...
第六章 自衡对象 Smith 预估控制

我们在前面分别讨论了两种基于 Padé 近似的 PID 控制器优化设计方法，从理论上讲，设计过程完全可以在精确阶跃响应上进行，但是针对高阶对象设计并不会从本质上改善控制器的性能，所以我们仅仅针对一阶惯性加滞后模型进行设计，这样可以得到 PID 控制器和 Smith 预估器等价的结论。

在单变量系统中，由于纯滞后的作用，使得控制器的解析设计非常困难，所以连续系统一般自衡对象的 Smith 预估器解析设计问题一直是个悬而未决的问题。严格地讲，前面提出的设计方法并未解决这个问题，因为这些方法纯滞后是用低阶有理近似来代替的。在这一章中我们将从 H2 最优控制理论出发，给出一种更好的处理时滞对象的方法，它在严格处理滞后的前提下，圆满地解决了时滞对象的控制问题。

6.1 自衡对象的 Smith 预估器设计

考虑第二章中介绍的一般自衡控制对象

\[ G(s) = \frac{Ke^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1) \cdots (\tau_n s + 1)} \]

它又可表示为

\[ G(s) = \frac{Ke^{-\theta s}}{b_n s^n + \cdots + b_2 s^2 + b_1 s + 1} \quad (6.1-1) \]

令

\[ M(s) = 1 + b_1 s + b_2 s^2 + \cdots + b_n s^n \quad (6.1-2) \]

因为 \( G(s) \) 是稳定的，所以 \( b_i \geq 0, i = 1, 2, \ldots, n \)。则

\[ G(s) = \frac{K Q^*(-\theta s)}{M(s)Q^*(-\theta s)} \quad (6.1-3) \]

这里 \( n \) 是个足够大的整数。

设系统性能指标为 \( \min \| W(s)S(s) \| \)，输入信号为单位阶跃信号，滤
波权函数为 $W(s) = \frac{1}{s}$，为了使系统稳态误差为零，$Q(s)$ 必须满足

$$\lim_{s \to 0} 1 - G(s)Q(s) = 0$$

那么满足要求的 $Q(s)$ 集合仍是

$$Q(s) = \frac{1}{K} + sQ_1(s) \quad Q_1(s) \text{ 稳定} \quad (6.1-4)$$

所以

$$\| W(s)S(s) \|_2^2 \leq \left\| W(s) \left[ 1 - G(s) \left( \frac{1}{K} + sQ_1(s) \right) \right] \right\|_2^2$$

$$= \left\| \frac{1}{s} \left[ 1 - \frac{Q_{ss}(-\theta s)}{M(s)Q_{ss}(\theta s)} - \frac{KQ_{ss}(-\theta s)sQ_{ss}(\theta s)}{M(s)Q_{ss}(\theta s)} \right] \right\|_2^2$$

$$= \left\| \frac{M(s)Q_{ss}(\theta s) - Q_{ss}(-\theta s)}{sM(s)Q_{ss}(\theta s)} - \frac{KQ_{ss}(-\theta s)sQ_{ss}(\theta s)}{M(s)Q_{ss}(\theta s)} \right\|_2^2$$

$$= \left\| \frac{Q_{ss}(-\theta s) + C(s)}{sQ_{ss}(\theta s)} - \frac{sM(s) - 1}{sM(s)} \right\|_2^2$$

因为

$$\frac{M(s) - 1}{s} = b_1 + b_2s + b_3s^2 + \cdots + b_ms^{m-1}$$

$$b_i \geq 0, i = 1, 2, \cdots, m \quad (6.1-5)$$

$$\frac{Q_{ss}(-\theta s) - sQ_{ss}(-\theta s)}{s} = (a_1s + a_2s^2 + \cdots + a_ms^m)$$

$$- (1 - a_1s + a_2s^2 - \cdots + a_ms^m)$$

$$= a_1s^2 + a_2s^3 + \cdots + a_m(1 + (-1)^s)s^m$$

$$a_i \geq 0, i = 1, 2, \cdots, m$$

所以

$$\frac{Q_{ss}(\theta s) - sQ_{ss}(-\theta s)}{sQ_{ss}(-\theta s)} \in H_2$$

$$\frac{M(s) - 1}{sM(s)} - \frac{K}{M(s)}Q_1(s) \in H_2$$
对等式右边进行正交展开

\[
\| W(s) S(s) \|_2^2 = \left\| \frac{Q_m(s) - Q_m(-s)}{sQ_m(-s)} \right\|_2^2 + \left\| \frac{M(s) - 1}{sM(s)} - \frac{K}{M(s) Q_m(s)} \right\|_2^2 \quad (6.1-7)
\]

对等式右边取极小，由唯一最优的 \( Q_m(s) \) 求得唯一最优的 \( Q_m(s) \) 为

\[
Q_m(s) = \frac{M(s)}{K} \quad (6.1-8)
\]

\( Q_m(s) \) 的形式非常简单。引入滤波器

\[
J(s) = \frac{1}{(\lambda s + 1)^m}
\]

得到正则的 \( Q(s) \) 为

\[
\sigma Q(s) = \frac{M(s)}{K(\lambda s + 1)^m} \quad (6.1-9)
\]

经过简单的计算得到 Smith 预估控制器为

\[
R(s) = \frac{1}{K} \frac{M(s)}{(\lambda s + 1)^m - 1} \quad (6.1-10)
\]

因为 \( n/n \) 阶 Pade 近似可以对滞后项进行任意的逼近，所以我们在严格处理滞后的前提下，通过解析方法得到了能够完全补偿自衡对象滞后的 Smith 预估控制器，这个结果不难推广到控制对象的分子不为 1，并且包含多个右半平面零点的情况，得到的控制器是相同的。

### 6.2 Smith 预估器的等价实现

虽然控制器的推导过程比较麻烦，但是得到的结果却非常简单，下面我们还将看到，这样一个控制器有着非常简单而合理的物理解释。事实上，在早期的控制实践中，就已经有技术人员使用了这一方法，只是他们并不知道，这实际上是最优控制的结果。

考虑图 6.2-1 所示的 Smith 预估器的等价结构。设计的要求是寻找一个稳定的控制器 \( R(s) \)，使控制系统的输出 \( y \) 能够尽量好地跟踪控制系统的输入 \( r \) 或者等价地最小化系统外部干扰的影响。在标称情况下，\( G(s) = G_m(s) \)，所以反馈信号为 0，这时系统是开环的。一个自然的想法是取

\[
Q(s) = G(s)^{-1} \quad (6.2-1)
\]

这样系统的闭环传递函数为
图6.2-1  Smith预估器的等价结构

\[ T(s) = G(s)Q(s) = 1 \]  
(6.2-2)

那幺系统的输出 \( y(t) \) 就能精确地跟踪输入 \( r(t) \)。由于滞后 \( e^{-\theta s} \) 的存在，这样做肯定是不行的，因为滞后的逆是非因果的，在物理上无法实现。另一种可能是取

\[ Q(s) = G(s)\infty \]  
(6.2-3)

则系统的闭环传递函数为

\[ T(s) = G(s)Q(s) = e^{-\theta s} \]  
(6.2-4)

也就是说，系统的输出 \( y \) 经过时间 \( \theta \) 的延迟后就能精确地跟踪输入 \( r \)。虽然 \( G(s)\infty \) 也是非因果的，但是任何非因果的有理传递函数都可以由相应的因果的有理传递函数无限地逼近。逼近 \( G(s)\infty \) 最简单的方法就是令

\[ Q(s) = \frac{G(s)\infty}{(\lambda s + 1)^{m}} \]  
(6.2-5)

其中 \( m \) 等于 \( G(s)\infty \) 的最高次数，\( R(s) \) 则可由 \( Q(s) \) 回代求出。显然，\( R(s) \) 就是本章得到的控制器。

容易求出 \( m = 1 \) 时系统闭环传递函数为

\[ T(s) = G(s)Q(s) = \frac{1}{\lambda s + 1}e^{-\theta s} \]  
(6.2-6)

因此本章得到的 Smith 预估器和 Dahlin 控制器是严格等价的，这表明，在早期发展起来的算法中确实有一些非常有效的方法，虽然这些方法的本质可能还没有在理论上被证实。

在过程控制中，使用较多的是 2 阶模型，当采用 2 阶模型

\[ G(s) = \frac{Ke^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} \]  
(6.2-7)

时，按本章方法设计的 Smith 预估控制则

\[ R(s) = \frac{(\tau_2 s + 1)(\tau_3 s + 1)}{K(\lambda s + 2\lambda s)} \]  
(6.2-8)
这是一只 PID 控制器。

可以看出，对 2 阶以上的控制对象，仅仅采用 PID 控制器作为 Smith 预估控制器不能得到最佳的控制效果，因为控制器不能完全抵消控制对象的极点。

我们在设计 Smith 预估器时，利用了内模控制结构，由此可以想到，在 Smith 预估器和内模控制之间必然存在某种联系。实际上，当滞后为零时，本章讨论的 Smith 预估器就完全地等价为内模控制。内模控制是一种针对有理控制对象的优化设计方法，最初是由 Garica and Morari (1982) 提出的，他们的研究在本质上是针对一阶控制对象的，其滤波器取作

\[ J(s) = \frac{1}{\lambda s + 1} \]  (6.2-9)


因为内模控制与 Brosilow and Tong (1978) 提出的推理控制是等价的，所以本章讨论的 Smith 预估器的另一种等价实现就是推理控制。

预测控制是 70 年代后期产生的一类新型计算机时域控制算法，自提出后引起了控制界的广泛兴趣，其代表方法有动态矩阵控制（Culter and Ramaker，1979）和模型算法控制（Ricla et al.，1978）等。Garica and Morari (1982) 在离散域中的研究表明，动态矩阵控制（控制步长应与预测步长相等）和模型算法控制（一步预测）与内模控制是等价的，所以连续域的 Smith 预估器与这些算法也是等价的。

至此，我们就建立起了 H_2 最优控制、Smith 预估器、Dahlin 控制器、内模控制、推理控制和预测控制之间的联系。

由于连续域分析的直观性，至少可以使我们从以下几个方面更深刻地理解预测控制的本质。

（1）假定控制对象是 m 阶的，则在某一时刻控制作用不变时，预测模型至少有 m 个预测值才能保证不损失信息。
（2）对 m 阶控制对象，期望的系统闭环响应至少应是 m 阶的，换句话说，参考轨迹在某一时刻应至少有 m 个点。

（3）为达到最优控制，在滚动优化时，应使系统的输出在每一点上都与参考轨迹的偏差最小，所以在反馈校正时，需要至少 m 个控制增量。

因此，在预测控制中，要达到最佳控制，控制步长应与预测步长相等，并且要大于或等于 m。从连续域控制方法和离散时域方法的对比中，还可引出以下需要进一步思考的问题：

（1）在 H₂ 控制或预测控制中，为了限制控制变量 u，经常引入附加的约束。但是控制变量 u 同时又受控制器参数 λ 的影响，那么引入附加的约束是否还有意义？

（2）即然控制步长应与预测步长相等，并且要大于或等于 m，才能达到最优控制，那么对控制步长与预测步长不等，或者它们小于 m 情形的研究，是否还有意义？

（3）我们提出的方法是针对自衡对象得到的，下一章将把这种方法推广到非自衡对象的控制或干扰抑制中，那么相对应地，是不是能得到一类更具有一般意义的预测控制算法呢？

（4）本文提出的方法对其他预测控制算法是否也有类似的启示？

6.3 滤波器选择

在控制器的设计中我们引入了滤波器，滤波器的作用有两个：

（1）最优的 Q(s) 一般是非正则的，引入滤波器是为了使非正则的 Q(s) 参数正则化。

（2）因为 S(s) = 1 − G(s)Q(s), T = G(s)Q(s), 所以它可以用于调节系统的性能和鲁棒性。

那么应当如何选择滤波器呢？下面就来具体讨论这个问题。

我们知道一个非正则传递函数，它的分子阶次肯定大于分母阶次，要使它变成正则的必须引入一个分子阶次小于分母阶次的滤波器，换句话说滤波器必须是低通的，以便对高频特性进行衰减。因为低通函数的形式有许多种，所以这个要求并不能唯一地确定滤波器。

渐近跟踪是对控制系统的基本要求，它也给滤波器的选择施加了约束。根据前面的讨论，m 型系统应当满足下列条件：“

- 76 -
$$\lim_{s \to 0} \frac{1 - G(s)Q(s)}{s} = 0, \ 0 \leq k < m \quad (6.3.1)$$

或

$$\lim_{s \to 0} \frac{d^4}{ds^4} (1 - G(s)Q(s)) = 0, \ 0 \leq k < m \quad (6.3.2)$$

滤波器的引入对系统的标称性能和鲁棒性均有影响，以上面的设计为例，系统的性能为：

$$\min \| W(\sigma) (1 - G(s)Q(s)) \|_\infty = \left| W \left( \frac{\sigma}{\beta} \right) \right| \quad (6.3.3)$$

如果仅仅以标称性能为设计目标，那么滤波器的结构和参数都应选择得使标称性能最优。但是在鲁棒设计目标下滤波器的参数是可调的，系统性能可以随意经过，因此只要选择最简单的滤波器结构即可。由于多参数的滤波器并不能对控制器的设计提供本质的改进，所以在过程控制中一般只选用单参数单位增益的滤波器，它的一般形式可表示为：

$$J(s) = \frac{\beta_m s^{n-1} + \cdots + \beta_1 s + 1}{(\lambda s + 1)^n} \quad (6.3.4)$$

其中 $n$ 应选择得足够大以便使非正则的 $Q$ 参数正则化。$\beta_i (0 \leq i \leq m)$ 应根据渐近跟踪的要求选择。$\lambda$ 是可调参数，代表了系统闭环响应的带宽，它决定了控制系统的性能（图 6.3-1）。

![图 6.3-1 不同 $\lambda$ 时系统的响应](image)

根据渐近跟踪要求可知，$I$ 型系统的滤波器应为
图 6.3-2 典型的滤波器响应

\[ J(s) = \frac{1}{(\lambda s + 1)^2} \]  \hspace{1cm} (6.3-5)

2 型系统的滤波器应为

\[ J(s) = \frac{n \lambda s + 1}{(\lambda s + 1)^2} \]  \hspace{1cm} (6.3-6)

典型的滤波器响应如图 6.3-2 所示。

6.4 参数不确定性对系统的影响

在本节中，我们将针对一阶惯性加纯滞后控制对象，研究参数不确定性对系统的影响。之所以选择一阶控制对象有两个原因：

（1）在过程控制实践中，大量使用的仍是一阶控制对象。

（2）采用一阶控制对象容易分析，便于得到较好的结论。

事实上，在一阶控制对象中，增益和滞后变化带来的影响与高阶系统中是一样的，而时间常数变化带来的影响与高阶系统中则是类似的。

当考虑到控制对象的不确定性时，本章提出控制器中的 \( \lambda \) 取值一般在 0-0.5 \( \lambda \) 之间，推荐 \( \lambda \) 取值为 0.250 左右。

考虑一阶控制对象

\[ G(s) = \frac{K e^{-\lambda s}}{s + 1} \]  \hspace{1cm} (6.4-1)
其中 \( K \in [K_{\text{min}}, K_{\text{max}}], \tau \in [\tau_{\text{min}}, \tau_{\text{max}}], \theta \in [\theta_{\text{min}}, \theta_{\text{max}}] \)。设控制对象模型为

\[
G_m(s) = \frac{Ke^{-\delta \theta}}{\tau s + 1}
\]  

（6.4-2）

各参数的标称值如下

\[
\bar{K} = \frac{K_{\text{max}} + K_{\text{min}}}{2}, \quad \bar{\tau} = \frac{\tau_{\text{max}} + \tau_{\text{min}}}{2}, \quad \bar{\theta} = \frac{\theta_{\text{max}} + \theta_{\text{min}}}{2}
\]

则参数不确定性可表示成

\[
\delta K = K_{\text{max}} - \bar{K}, \quad \delta \tau = \tau_{\text{max}} - \bar{\tau}, \quad \delta \theta = \theta_{\text{max}} - \bar{\theta}
\]

显然 \(|\delta K| < |\bar{K}|\), \(|\delta \tau| < |\bar{\tau}|\), \(|\delta \theta| < |\bar{\theta}|\)。那么不确定模型族可以表示为

\[
G(s) = \frac{(\bar{K} + \delta K)e^{-\delta \theta \bar{\tau}}}{(\bar{\tau} + \delta \tau)s + 1}
\]  

（6.4-3）

虽然我们可以将上述参数不确定性转化为乘性非结构不确定性，但是对这类特殊情况，乘性非结构不确定性分析起来比较麻烦，所以这里仍采用参数不确定性来分析。

图 6.4-1  增益不确定性的影响

现在假设，控制对象的增益、时间常数和滞后分别发生了土20%和土40%的变化，这时控制系统的典型响应分别如图 6.4-1 至图 6.6-4 所示。从图中可以看出，三个参数的变化对控制系统的影响是比较有规则的。随着增益的增大，系统上升时间减小，超调增大，反之则上升时间延长，没有超调；随着时间常数的增大，系统上升时间延长，响应平缓，而时间常数减小时则上升时间减小，系统响应产生波动；当滞后增大时，系统超调增大，而减小时
系统无超调。

总的来说，控制对象的增益和滞后变化对系统响应的影响要大些。特别是时间常数减小，增益和滞后增大时，或时间常数增大，增益和滞后减小时，系统性能的变化最大。
6.5 PID 控制器的局限

我们在前面讨论过，Smith 预估器结构可以和单位反馈控制回路等价起来，它们之间的联系可以表示为

\[
C(s) = \frac{R(s)}{1 + (G_{as}(s) - G_a(s))R(s)}
\]  \hspace{1cm} (6.5-1)

将

\[
R(s) = \frac{M(s)}{K(\lambda s + 1)^n - K}
\]  \hspace{1cm} (6.5-2)

和

\[
G_a(s) = \frac{K e^{-s}}{M(s)}
\]  \hspace{1cm} (6.5-3)

代入得

\[
C(s) = \frac{1}{K} \frac{M(s)}{(\lambda s + 1)^n - e^{-s}}
\]  \hspace{1cm} (6.5-4)

由最优控制器的唯一性可知这样的 \(C(s)\) 是唯一的。所以，单位反馈控制回路中的控制器，如果要对滞后进行完全补偿则必须满足上式。

可以看出，在时滞对象的控制中，要用 PID 控制器达到最优控制是不可能的。有两个方面的困难：

(1) 当滞后为零时，如果控制对象的阶次大于 4，则低阶的 PID 控制器不可能确切地逼近高阶的 \(C(s)\)。

(2) 当滞后不为零时，由于 \(C(s)\) 中包含了 \(e^{-s}\)，所以有无穷的 PID 控制器更不可能精确地逼近无穷的 \(C(s)\)。

考虑控制对象是二阶时的情况，这时 \(M(s) = (\tau_1 s + 1)(\tau_2 s + 1), m = 2\)，则控制器 \(C(s)\) 为

\[
C(s) = \frac{1}{K} \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{(\lambda s + 1)^2 - e^{-s}}
\]  \hspace{1cm} (6.5-5)

要使 PID 控制器逼近上式，只能用不高于二阶的多项式展开 \(e^{-s}\)。如果用一阶 Taylor 展开，就是第四章中讨论的情况；如果用二阶 Taylor 展开，则得到另一种形式的 PID 控制器

\[
C(s) = \frac{1}{K} \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{(\lambda s + \frac{\beta}{2})^2 + (2\lambda + 0)s}
\]  \hspace{1cm} (6.5-6)

\[\cdot 81\]
因为二阶 Taylor 展开的精度较高，所以上面的 PID 控制器的控制效果也比
按一阶 Taylor 展开设计的好。

考虑控制对象是一阶时的情况，这时 \( M(s) = \tau s + 1, m = 1 \)，则控制器 \( C(s) \) 为

\[
C(s) = \frac{1}{K} \frac{\tau s + 1}{\lambda s + 1 - e^{-\frac{s}{\tau}}}
\]

（6.5-7）

要使 PID 控制器逼近上式，最好的办法是用一阶 Pade 近似展开 \( e^{-\frac{s}{\tau}} \)，也就是 4.2 节中讨论的情况。

所以，从目前的结果来看，本文发展的基于有理近似的 PID 控制器设
计方法提供了较好的控制效果，PID 控制器性能的进一步改善，有待于发展
更优越的时滞有理逼近方法。

改善控制器性能的另一种途径是发展一种零极点配置方法，它能够将
控制器的零极点配置在最佳的位置上，但这是仅仅是对标称情况而言，如果考
虑到鲁棒性问题，则没有这个必要，因为本文发展的 PID 控制器已经具有
了可以按需要调整的鲁棒性。

一个值得注意的现象是，对没有完全补偿后的控制系统，在标称性能
趋向于最优时，超调总是存在并且很大。而对完全补偿后的控制系统则不
存在这样的情况。从理论上探讨这一现象的原因还是个有待研究的问题。

![图 6.5-1 冷水加热温度调节系统](image)

例 6.5-1 一个冷水加热温度调节系统如图 6.5-1 所示。加热器本身是个
填料塔，温度分别为 \( \theta_1 \) 和 \( \theta_2 \) 的热水和冷水自塔顶流入，由塔底流出，得到
温度为 \( \theta_3 \) 的热水。假设流入的热水和冷水是充分混合的。流出热水的温度
由控制器 1 调节流入热水流量来控制，流出热水的流量由控制器 2 调节冷
水流量来控制。由于流量调节回路的快速性，可以忽略两个调节回路之间的
图 6.5-2 标称系统的响应

图 6.5-3 增益和滞后同时增大时的响应

相互影响。用实验方法测得温度调节通道的传递函数为

\[ G(s) = \frac{K e^{-\theta s}}{(13.8s + 1)(6.1s + 1)(3.9s + 1)} \]  (6.5-8)

其中 \( K = 0.4, \theta = 24 \), 时间单位为秒。当采用传统的 Smith 预估器时，控制器的参数为 \( P = 3.65, I = 30 \) (Singh, 1975)。若采用上一章提出的 PID 控制器，可以取 \( \lambda = 0.4 \theta \)。作为对比，本章的控制器参数分别取为 \( \lambda = 0.5 \) 和 \( \lambda = 6 \)。标称系统响应如图 6.5-2 所示。比较起来，\( \lambda = 6 \) 的控制器性能要比传统的
图 6.5-4 增益和滞后同时减小时的响应

Smith 预估器和新的 PID 控制器稍好一些，而 $\lambda=0.5$ 的控制器则具有非常好的性能。事实上，随着 $\lambda$ 的减少，系统可以具有任意好的性能，但是当考虑到控制对象的不确定性时，$\lambda$ 就不能取得任意小了。

现在假定，控制对象的增益发生了 20%的扰动，滞后发生了 40%的扰动。根据前面的讨论知道，当增益和滞后同时增大或同时减小时，对系统影响最大，这时系统的响应分别如图 6.5-3 和图 6.5-4 所示。$\lambda=0.5$ 的控制器已经不能用了，其它三种控制器的响应有些差别，但不是很大。这表明，在鲁棒性要求的前提下，按适当方法设计的 Smith 预估器和 PID 控制器并没有本质的区别。

6.6 具有反向响应过程的控制

某些过程的动态响应与以前讨论的会有很大差异，其特点是阶跃响应在开始阶段的方向与最终阶段的方向相反，这种特性称为反向响应特性，只有少数的工艺装置才呈现这种特性，如汽包锅炉和精馏塔等（Luyben, 1973; Innoya and Altpeter, 1962; 严宗ți, 1982）。

反向响应过程的基本特征是，过程传递函数有一个右半平面的零点，或者更复杂地，有奇数个右半平面零点。有右半平面零点的过程又称非最小相位过程（NMP），对这类过程可以这样来理解，即在相同的幅值下，非最小相
位过程不具有最小的相位。例如过程
\[ G(s) = \frac{1 - s}{1 + s} \]
的幅值为 \( |G(j\omega)| = 1 \)，相位为 \( \phi(\omega) = \arctg \frac{2\omega}{\omega^2 - 1} \)。显然，存在具有相同幅值和更小相位的过程，譬如 \( G(s) = 1 \) 的幅值为 1，相位为 0。非最小相位过程一般是比较难控制的。

![图6.6-1 两个相向作用一阶系统](Image 40x63 to 550x780)

图6.6-1 两个相向作用一阶系统

最常见的反向响应过程是由两个相向作用一阶系统引起的，如图6.6-1所示。容易求出系统总的响应为
\[ y(s) = \left( \frac{K_4}{\tau_4s + 1} - \frac{K_5}{\tau_5s + 1} \right) u(s) \quad (6.6-1) \]
或
\[ y(s) = \left( \frac{K_4\tau_5 - K_5\tau_4}{\tau_4s + 1} + \frac{K_5 - K_4}{\tau_5s + 1} \right) u(s) \quad (6.6-2) \]
产生反向响应的条件是 \( \tau_1 > \tau_2, \tau_3 > \tau_4 \)，即过程 2 比过程 1 快，对整个系统响应起主导作用。但是过程 1 最后达到的稳态值高于过程 2 的稳态值，从而迫使整个系统的响应又朝着相反方向变化（图6.6-2）。

迄今为止，在过程控制中，控制反向响应的常用方法有两种：第一种是采用 Z-N 法整定的 PID 控制器，第二种是采用反向响应补偿器。

Wallace and Nygardas（1975）的研究表明，采用 Z-N 法整定的 PID 控制器，可以使反向响应系统得到较好的控制。Inoya and Altspeter（1962）则提出，可以将 Smith 预估器的设计思想用于具有反向特性的过程。考虑图6.6-3 所示的反馈控制系统，系统开环传递函数是
\[ y(s) = C(s) \left( \frac{K_1\tau_2 - K_2\tau_1}{\tau_1s + 1} + \frac{K_1 - K_2}{\tau_2s + 1} \right) T(s) \quad (6.6-3) \]
它具有一个右半平面零点
图 6.6-2 反向响应曲线

图 6.6-3 反向响应过程的反馈控制

\[ z = \frac{K_2 - K_1}{K_1 \tau_2 - K_2 \tau_1} > 0 \]

为了抵消反向响应带来的影响，要求测量信号反映的是不包括反向响应的信息，为此将 \(C(s)\) 改为 \(R(s)\)，并在系统输出上附加一个量 \(y\)，即可做到，那么

\[
y(s) = y(s) + y_1(s) = R(s) \left[ (K_1 \tau_2 - K_2 \tau_1) + K (\tau_1 - \tau_2) s + \frac{(K_1 - K_2) r(s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \right] \tag{6.6-4}
\]

只要

\[ K \geq \frac{(K_2 \tau_1 - K_1 \tau_2)}{\tau_1 - \tau_2} \]

开环传递函数的零点就不正正：

- 86 -
\[ z = \frac{K_2 - K_1}{(K_1 \tau_2 - K_2 \tau_1) + K(\tau_1 - \tau_2)} \leq 0 \]

将信号 \( y \) 加到主反馈信号 \( y \) 上，意味着建立一个如图6.6.4所示的局部回路，这个回路就是反向响应补偿器。

![图6.6.4 反向响应过程的补偿控制](image)

对这种补偿控制结构，Linoya and Altpeter 建议 \( R(s) \) 一般选用 PI 控制器，并指出，模型中 \( \tau_1 \) 和 \( \tau_2 \) 的不准确将会恶化补偿器的性能。但是限于控制理论当时发展的水平，有两个问题他们没有回答：

（1）怎样整定 PI 控制器能获得好的性能。
（2）如何克服模型不确定性带来的影响。

下面的讨论将解决这两个问题。令反向响应补偿器为

\[ \frac{K_2}{\tau_2 s + 1} - \frac{K_1}{\tau_1 s + 1} \quad (6.6-5) \]

按前面的讨论，可得到次最优控制器

\[ R(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{(K_1 - K_2)(2s + 1)^2} \quad (6.6-6) \]

不仅如此，它还适用于控制对象具有滞后的情况（邵恩鹤等译，1982），即

\[ G(s) = (K_1 - K_2) \left( \frac{K_1 \tau_2 - K_2 \tau_1}{(\tau_1 s + 1)(\tau_2 s + 1)} \right) e^{-\delta s} \quad (6.6-7) \]

那么单位反馈控制回路中的控制器为

\[ C(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{\lambda^2(K_1 - K_2)s^2 + \left[ 2\lambda(K_1 - K_2)s + (K_1 \tau_1 - K_2 \tau_2) \right] s} \quad (6.6-8) \]

\( C(s) \) 是 PID 控制器。这表明，用适当的方法调节 PID 控制器确实能得到很好的控制效果。
同样地，利用 $H_{\infty}$ 设计方法也可得到类似的控制器。

例 6.6-1 考虑如下的具有反向控制对象（Finoya and Altpeter，1962）

$$G(s) = \frac{3(-2s+1)}{(2s+1)(s+1)}$$

(6.6-9)

当使用 I-A 法时，补偿器选作

$$6\left(\frac{1}{s+1} - \frac{1}{2s+1}\right)$$

控制器的参数为 $P=1/6, I=0.5$。用 Z-N 法整定 PID 控制器时，控制器参数为 $P=0.3, I=3.0, D=0.75$。用本章提出的控制方法，补偿器选为

$$\frac{3(2s-1)}{(2s+1)(s+1)}$$

控制器的参数是 $\lambda=1$。标称系统的响应如图 6.6-5 所示，其中本章提出的方法控制效果最好，I-A 法的控制效果很差，还不如使用 Z-N 法整定的 PID 控制器。

![图 6.6-5 控制系统的响应](image)

6.7 小结

传统的观点认为 Smith 预估器具有好的干扰抑制能力和鲁棒性，但是却没有回答这两个缺点究竟是来自控制结构还是来自设计方法。本章以及前面两章的讨论表明，Smith 预估器的干扰抑制能力和鲁棒性差并不是这
种由控制结构造成的，而是由于缺少像 PID 控制器那样有效的设计方法造成的。

在以往的控制系统设计中，H2 最优控制、Smith 预估器、Dahlin 控制器、内模控制、推理控制和预测控制，都是作为独立的控制策略而被研究的。我们则在给定的框架内统一地解释了这几种方法，从理论上证明了它们的基本结果实际上相互等价的。这一结论对指导今后的控制系统设计具有重要的意义。

我们还证明了，用 PID 控制器控制时滞对象，不可能做到完全时滞补偿，从目前的结果来看，本文发展的基于 Padé 近似的 PID 控制器设计方法提供了较好的控制效果，PID 控制器性能的进一步改善，有待于发展更优越的时滞有理逼近方法。

在本章中，我们将 Smith 预估器推广到了具有反向响应过程的控制中，并给出了解析设计方法，从根本上解决了这类对象的控制问题。

本文的结果还表明，对标准控制系类，因为时滞被完全补偿了，所以 Smith 预估器能提供比 PID 控制器更好的控制效果。但是对不确定控制对象，Smith 预估器的控制效果和 PID 控制器的控制效果并没有本质的区别。

第七章 积分对象控制

控制系统的品质取决于各个环节，其中控制对象是否易于控制，对整个系统运行有很大的影响。过程控制中存在一类典型控制对象，称为积分对象，其基本特征是，阶跃变化作用下，过程输出不能达到稳态值，而是以一定的速度无限地增大或减小。这样的控制对象是临界稳定的，其模型中一般包含一个积分项。

对自衡对象，已经发展了许多控制方法，其中最常用的是 PID 控制器和 Smith 预估器。而讨论积分对象控制的文献则不多。那么，PID 控制器和 Smith 预估器能不能直接用于积分对象的控制呢？在本文前面介绍的传统 PID 控制器整定方法中，只有 Z-N 法能用于这类对象的控制，但是 Z-N 法整定的控制器振荡比较厉害（Tyreus and Luyben，1992）。若将单位反馈控制回路转化为 Smith 预估控制结构，因为控制对象不稳定，所以控制系统也将是不稳定的。因此无论是 PID 控制器还是 Smith 预估器都不能直接用于积分对象的控制，前者不能提供合适的响应，而后者不能保证闭环系统的稳定性。本章将讨论如何解决这些问题。

7.1 积分对象的 H_\infty PID 控制

原则上，前面提出的 PID 控制器设计思想也适用于积分对象，但是要做一定的修正。考虑图 7.3-1 所示的控制系统。假定控制对象是积分过程

\[ G(s) = \frac{1}{Ts}e^{-\theta s} \]  \hspace{1cm} (7.1-1)

控制器是按最小化阶跃干扰设计的。把控制对象输入端干扰等价到控制对象输出端，有

\[ d_2(s) = d_1(s)G(s) = \frac{1}{Ts}e^{-\theta s} \]

所以该系统相当于是个 2 型系统。利用 1/1Pade 近似展开，有

\[ \vdots \]
\[ G(s) = \frac{1 - \frac{\alpha}{2}s}{T_s \left( 1 + \frac{\alpha}{2}s \right)} \] (7.1-2)

图7.1-1 单位反馈回路

控制系统性能指标取作 \( \min || W(s)S(s) || \infty \)。根据第三章的讨论，有如下的设计步骤：

(1) 做控制对象的互质分解 \( G(s) = \frac{N(s)}{M(s)} \)。

(2) 最小化 \( || W(s)S(s) || \infty = || W(s)M(s)[Y(s) - N(s)Q(s)] || \infty \)，求出最优的 \( Q_m(s) \)。

(3) 引入2型系统滤波器对 \( Q_m(s) \) 进行衰减，得到 \( Q(s) \)。

(4) 由 \( Q(s) \) 求出单位反馈控制回路控制器 \( C(s) \) 为

\[ C(s) = \frac{X(s) + M(s)Q(s)}{Y(s) - N(s)Q(s)} \]

但是在设计PID控制器时，我们不打算采用这种设计方法，这种方法要作互质分解，得到的控制器阶次较高，我们将在这里给出一种两步的修正算法。首先，按阶跃输入的情况设计控制器，得到 \( Q_m(s) \)。其次，引入合适的滤波器 \( J(s) \)，使系统满足渐近跟踪斜坡函数的要求。

图7.1-1 单位反馈回路

考虑图7.1-1 所示的控制系统，因为 \( G(s) \) 不是稳定的，所以 \( Q(s) \) 的稳定不能保证闭环控制系统的稳定。但是如果令 \( Q(s) = sQ_1(s) \)，那么 \( Q_1(s) \) 稳定就等价于闭环控制系统的稳定。

设系统输入为阶跃信号，则 \( W(s) = \frac{1}{s} \)，根据最大模定理有
\[ \| W(s)S(s) \|_\infty = \| W(1 - G(s)Q(s)) \|_\infty \geq \left| W\left(\frac{2}{\theta}\right)\right| \]

最小化等式的左边，得到
\[ \min \| W(s)(1 - G(s)Q(s)) \|_\infty = \left| W\left(\frac{2}{\theta}\right)\right| \quad (7.1-3) \]

则最优的 \( Q(s) \) 为
\[ Q_{\text{un}}(s) = \frac{W(s) - \theta}{W(s)G(s)} = T(1 + \frac{\theta}{2s}) \]

所以
\[ Q_{\text{un}}(s) = Ts(1 + \frac{\theta}{2s}) \quad (7.1-4) \]

我们知道，如果控制系统能够渐近跟踪斜坡函数，那么 \( S(s) = 1 - G(s)Q(s) \)
在原点至少要有两个零点，下面的滤波器则可以满足这样的要求。
\[ J(s) = \frac{(3\lambda + \frac{\theta}{2})s + 1}{\lambda s + 1} \quad (7.1-5) \]

因此
\[ Q(s) = Q_{\text{un}}(s)J(s) = \frac{Ts(1 + \frac{\theta}{2s})\left[(3\lambda + \frac{\theta}{2})s + 1\right]}{(\lambda s + 1)^3} \quad (7.1-6) \]

那么单位反馈控制回路的控制器为
\[ C(s) = \frac{Q(s)}{1 - G(s)Q(s)} \]
\[ = \frac{Ts(1 + \frac{\theta}{2s})\left[(3\lambda + \frac{\theta}{2})s + 1\right]}{(\lambda s + 1)^3 - (1 - \frac{\theta}{2s})(3\lambda + \frac{\theta}{2})s + 1} \]
\[ = T \left( \frac{\frac{3\lambda \theta}{2} + \frac{\theta^2}{4}}{\lambda^2 s^2 + \left(3\lambda^2 + \frac{3\lambda \theta}{2} + \frac{\theta^2}{4}\right)s} \right) \quad (7.1-7) \]

这就是我们要求的 PID 控制器。假定 PID 控制器具有下面的形式
\[ C(s) = K_c \left(1 + \frac{1}{T_{p}s + 1} \right) \]
\[ T_{p} \]

则控制器参数为
\[ T_r = \frac{\lambda^3}{3\lambda^2 + \frac{3\lambda\theta}{2} + \theta^2}, \quad T_l = \frac{\theta}{2} (\text{或} \frac{3\lambda}{2} + \frac{\theta}{2}) \]
\[ T_p = 3\lambda + \frac{\theta}{2} (\text{或} \frac{\theta}{2}), \quad K_c = \frac{TT_l}{3\lambda^2 + \frac{3\lambda\theta}{2} + \theta^2} \]  \hspace{1cm} (7.1-8)

### 7.2 积分对象的 H₂PID 控制

如果控制系统性能指标是 \( \min \| W(s)S(s) \|_2 \)，则由约束
\[
\lim_{s \to 0} 1 - G(s)Q(s) = 0
\]
可知满足条件的 \( Q(s) \) 为
\[
Q(s) = s(T + sQ_1(s)) \]  \hspace{1cm} (7.2-1)

所以
\[
\| W(s)S(s) \|_2 = \left\| \frac{1}{s} \left[ 1 - \frac{1}{2\lambda^2} (T + T sQ_1(s)) \right] \right\|_2 \]
\[
= \left\| \frac{\theta}{1 + \frac{\theta}{2}s} - \frac{1 - \frac{\theta}{2}s}{1 + \frac{\theta}{2}s} Q_1(s) \right\|_2 \]
\[
= \left\| \frac{\theta}{1 - \frac{\theta}{2}s} - Q_1(s) \right\|_2 \]
\[
= \left\| \frac{\theta}{1 - \frac{\theta}{2}s} \right\|_2 + \| Q_1(s) \|_2
\]

对上式求极小，可以求得 \( Q_{\text{lim}}(s) = 0 \)，因而 \( Q_m(s) = Ts \)。引入如下的滤波器
\[
J(s) = \frac{(2\lambda + \theta)s + 1}{(2s + 1)^2}
\]  \hspace{1cm} (7.2-2)

那么 \( Q(s) = Q_m(s)J(s) \) 可以使系统渐近跟踪斜坡信号。单位反馈控制回路中的控制器为
\[
C(s) = \frac{Q(s)}{1 - G(s)Q(s)}
\]
\[ T = \frac{\tau_0 (2\lambda + \theta) s + 1}{(\lambda s + 1)^2 (1 + \frac{\theta}{2} s) - (1 - \frac{\theta}{2} s)[(2\lambda + \theta) s + 1]} \]

\[ T = \frac{(2\lambda + \theta) s + 1}{\frac{\alpha \lambda^2}{2} s^2 + \left( \lambda^2 + 2\lambda \theta + \frac{\theta^2}{2} \right) s} \]  \hspace{1cm} (7.2-3)

它的参数为

\[ T_p = \frac{\lambda^2 \theta}{2\lambda^2 + 4\lambda \theta + \theta^2}, \quad T_i = 2\lambda + \theta, \quad K_c = \frac{T (2\lambda + \theta)}{\lambda^2 + 2\lambda \theta + \frac{\theta^2}{2}} \]  \hspace{1cm} (7.2-4)

Chien and Fruehauf(1990) 在内模控制框架下讨论了积分对象 PID 控制器设计问题，他们得到的控制器参数是

\[ T_i = 2\lambda + \theta, \quad K_c = \frac{T (2\lambda + \theta)}{(\lambda + \theta)^2} \]  \hspace{1cm} (7.2-5)

### 7.3 积分对象的 Smith 预估控制

根据自衡对象 Smith 预估器的设计经验，很自然地想到，是不是可以取

\[ Q_m = G^{-1} = T' s, \]  并引入滤波器 \( J(s) \) 对其进行修正，使系统能满足近跟踪斜坡函数的要求，然后得到积分对象的 Smith 预估控制器 \( R(s) \)。事实上，积分对象 Smith 预估器确实可以这样设计，而且得到的 \( Q(s) \) 与 PID 控制器设计时得到的 \( Q(s) \) 相同。

\[ Q(s) = \frac{T \left[ (2\lambda + \theta) s + 1 \right]}{(\lambda s + 1)^2} \]  \hspace{1cm} (7.3-1)

虽然这样设计可以得到低阶控制器，但是，由于 2 型控制器是通过对 1 型控制器修正来得到的，所以控制器的性能就有可能受到限制。在本节中，我们将直接从斜坡干扰抑制出发设计控制器，即取 \( W(s) = \frac{1}{s^2} \)。下面我们来看看 2 型系统的 \( Q(s) \) 具有什么样的形式。

2 型系统要求 \( Q(s) \) 应满足如下两个条件

\[ \lim_{s \to 0} 1 - G(s)Q(s) = 0 \]  \hspace{1cm} (7.3-2)

\[ \lim_{s \to 0} \frac{d}{ds} (1 - G(s)Q(s)) = 0 \]  \hspace{1cm} (7.3-3)
满足前一条件的 $Q(s)$ 为

$$Q(s) = s(T + TsQ_1(s))$$

代入后一条件左边，有

$$\lim_{s \to 0} \frac{d}{ds} \left[ 1 - \frac{1}{T} e^{-\theta s} (T + TsQ_1(s)) \right]$$

$$= \lim_{s \to 0} \frac{d}{ds} \left[ e^{-\theta s} (T + TsQ_1(s)) \right]$$

$$= \lim_{s \to 0} \left[ (-\theta) e^{-\theta s} + e^{-\theta s} Q_1(s) + s \frac{d}{ds} (e^{-\theta s} Q_1(s)) \right]$$

$$= \lim_{s \to 0} \left[ (-\theta) e^{-\theta s} + e^{-\theta s} Q_1(s) + s(-\theta) e^{-\theta s} Q_1(s) + s(-\theta) e^{-\theta s} \frac{d}{ds} Q_1(s) \right]$$

容易看出，$Q_1(0) = 0$ 满足后一条件。那么，满足上述两个条件的 $Q(s)$ 可以表示为

$$Q(s) = s(T + Ts + TsQ_2(s))$$

(7.3-4)

用足够高阶次的 Padé 近似逼近控制对象中的滞后，有

$$Q(s) = \frac{1}{T \theta} \frac{Q_\theta(-\theta s)}{Q_\theta(\theta s)}$$

(7.3-5)

设控制系统性能指标是 $\min \| W(s)J(s) \|_2$，则

$$\| W(s)J(s) \|_2 = \left\| \frac{1}{s\theta} \left[ 1 - \frac{Q_{\theta}}{TsQ_{\theta}(\theta s)} s(T + Ts + TsQ_1(s)) \right] \right\|_2$$

$$= \left\| \frac{1}{s^2} \left[ Q_{\theta} - (1 + \theta s + s^2 Q_1(s)) \right] \right\|_2$$

$$= \left\| \frac{Q_{\theta} - (1 + \theta s + s^2 Q_1(s))}{s^2 Q_{\theta}} \right\|_2$$

$$= \left\| \frac{Q_{\theta}}{s^2 Q_{\theta}} - \frac{1 + \theta s + s^2 Q_1(s)}{s^2} \right\|_2 + \| Q_2(s) \|_2$$

显然，当 $Q_{2\theta} = 0$ 时上式取极小，这时最优的 $Q(s)$ 为

$$Q_{\text{opt}}(s) = Ts(1 + \theta s)$$

(7.3-6)

引入 2 型系统滤波器得到

$$Q(s) = \frac{T s(1 + \theta s)(3\lambda + 1)}{(2\lambda + 1)^s}$$

(7.3-7)

那么 Smith 预估控制器为

$$R(s) = \frac{3\lambda^2 s^2 + (3\lambda + \theta) s + 1}{\lambda^2 s^2 + (2\lambda - 3\lambda^2) s - \theta}$$

(7.3-8)

95
它已经不是PID控制器了，若采用1/Pade近似代替控制对象中的滞后，再按本节的方法设计控制器，得到的单位反馈控制回路控制器也不是PID控制器。这意味着积分对象比较难控，必须采用复杂的控制器才能获得较好的控制效果。

图7.3-1 Smith预估器性能与可调参数的关系

图7.3-2 积分对象Smith预估器的响应特征

我们在讨论自衡对象控制时，得到了非常好的结论，所有控制器的标称性能都能够定量地估计。在积分对象控制中，控制器仍然保持了这个优点。
容易求出系统的闭环传递函数为

\[ T(s) = G(s)Q(s) = \frac{(1 + \theta s)(3\lambda s + 1)}{(\lambda s + 1)^3} e^{-\theta s}. \quad (7.3-9) \]

所以系统性能只与 \( \lambda \) 和 \( \theta \) 的比值有关。图 7.3-1 表示了 Smith 预估器的性能与可调参数的量的关系。从这里可以看出，积分对象控制的一个显著特点就是系统的超调总是在存在的，而且随着 \( \lambda \) 的增大而逐渐趋于一个固定值。图 7.3-2 给出了不同参数下控制系统的响应，它显示出积分对象控制的另一个特点，就是系统虽然存在超调，但并不振荡，系统的调节时间比较长。

在实际的控制系统中，\( \lambda \) 的取值一般在 1.0~2.0 之间。

例 7.3-1 考虑一个高纯精馏塔中间温度控制系统（Chien and Fruehauf, 1990）。精馏塔要分离的原料是三种异构体和少量的重组分，为了提高产出率，塔的过度分离能力设计的很小，所以对控制系统的要求很高。

精馏塔的控制策略表示在图 7.3-3 中。控制目标是，保证塔顶馏出物中轻的异构体是高纯的，并且使它在塔底产品中的含量最低。进入到塔内的热量是一定的，它通过调节蒸汽流入量来达到。馏出产品的流量由进料量决定。塔内的真空度是个固定值，由进入真空泵的蒸汽量调节。塔底的液位由塔底产品流出量调节。塔顶冷凝器液位由回流量调节。塔顶产品的质量则可通过控制精馏塔中间部分的温度来保证。

通过开环阶跃实验，测得过程的模型为

\[ G(s) = \frac{1}{Ts} e^{-\theta s}. \quad (7.3-10) \]

这里 \( T = 100, \theta = 5.5 \)。在 Smith 预估器中取 \( \lambda = 16; H_2 \) 方法设计的 PID 控制器中取 \( \lambda = 25; H_{\infty} \) 方法设计的 PID 控制器中取 \( \lambda = 16; Chien \) and Fruehauf 的 PID 控制器中取 \( \lambda = 21 \)，几种方法的响应表示在图 7.3-4 中。总的来说，几种方法的差别不是很明显，它们的共同特征是系统的调节时间比较长。

7.4 AHL-Smith 预估器设计

在前面的两节中，我们分别讨论了积分对象 PID 控制器和 Smith 预估器的设计问题。为了抑制控制对象输入端的干扰，控制器是按 2 型系统设计的。由此产生的问题是，尽管我们是从最优性能指标出发设计控制器的，但得到控制器的给定值响应却非常缓慢。回忆 4.8 节中关于自衡对象斜坡
图 7.3-3 高纯精馏塔的控制

图 7.3-4 几种控制器的标称响应

干扰抑制问题的讨论可知，要有效地解决这一问题，必须改变控制系统的结构。

Astrom et al. (1994) 受 Watanabe and Ito (1979) 的启发，针对积分常数
为1的情况提出一种新的控制结构，我们称为AHL-Smith预估器。对解决上述问题很有启发。新的控制结构的特点是，标称系统的给定值响应和干扰响应是解耦的，因而可以分别优化。

假定控制对象为

$$G(s) = \frac{1}{s}e^{-\alpha s} \quad (7.4-1)$$

则新的控制结构如图7.4-1所示，其中的$\hat{d}$可以看作是干扰$d$的一个估计。因此系统的给定值响应为

$$H_r = \frac{ke^{-\alpha_s}}{s + k} \left(1 + M(s)\frac{1}{s}e^{-\alpha_s}\right) = \frac{ke^{-\alpha_s}}{s + k}e^{-\alpha_s} \quad (7.4-2)$$

注意到$1 + M(s)\frac{1}{s}e^{-\alpha_s}$已被抵消了。干扰回路的传递函数为

$$H_d = \frac{\frac{1}{s}e^{-\alpha_s}}{1 + M(s)\frac{1}{s}e^{-\alpha_s}} \quad (7.4-3)$$

所以给定值响应和干扰响应是解耦的，其中给定值响应相当于一个一阶系统。

那么控制结构中的传递函数$M(s)$又应当怎样选择呢？

Astrom et al.认为选择如下的传递函数有利于改善干扰响应

$$M(s) = \frac{k_4 + k_3}{1 + k_1 + \frac{k_2}{s} + \frac{k_3}{s^2} - \left(\frac{k_4}{s} + \frac{k_3}{s^2}\right)e^{-\alpha_s}} \quad (7.4-4)$$

这里
\[ k_4 = k_2 + k_3 \theta \]

\[ k_1, k_2 \] 和 \( k_3 \) 都是可调的系数。

因此系统的干扰响应为

\[
H_d = \frac{e^{-\theta \tau} (1 + k_1) s^2 + k_2 s + k_3 - (k_1 s + k_3) e^{-\theta \tau}}{s [(1 + k_1) s^2 + k_2 s + k_3]} \quad (7.4-5)
\]

容易看出

\[ \lim_{\tau \to 0} H_d(s) = 0 \]

即系统可以保证零稳态误差。

例 7.4-1 考虑一个具有如下模型的控制对象

\[
G_m(s) = \frac{1}{s e^{-\theta \tau}} \quad (7.4-6)
\]

在时刻 \( t=0 \) 加入一个单位阶跃参考输入，在时刻 \( t=100 \) 加入一个干扰 \( d = -0.1/s \)。AHL-Smith 预估器中的参数是 \( k = 0.6, k_1 = 10, k_2 = 4, k_3 = 0.5 \)。Smith 预估器的参数是 \( \lambda = 16 \)。当模型精确时，系统的响应如图 7.4-2 所示。AHL-Smith 预估器的响应要快得多。

![图 7.4-2 不同设计方法的比较](image)

虽然 AHL-Smith 预估器改善了控制系统的性能，但增加了控制系统的复杂程度。另外一方面，这一方法还有几个局限：

（1）该控制结构是针对积分常数为 1 的情形提出的，虽然积分常数不为 1 的情形可以表示为归一化的形式，但是在这样复杂的控制结构中，很难
直接看出积分常数不为 1 时应当如何选择 $M(s)$。

（2）传递函数 $M(s)$ 决定了系统能否保证零稳态误差。Astrom et al. 根据经验给出了符合要求的 $M(s)$ 的结构，但是对为什么这样选择 $M(s)$ 缺乏必要的合乎逻辑的解释。

（3）在新的控制系统中，有四个可调参数，这四个参数中的三个要靠试验得到，Astrom et al. 既未指出如果选择才能保证系统的稳定性，也没给出能获得好的性能的整定规则。

下一节的改进设计方法就是针对 AHL-Smith 预估器的局限提出来的。

### 7.5 改进的积分对象 Smith 预估器

本节讨论一种新的设计方法，其特点是系统具有快的参考输入响应和很好的干扰抑制能力，系统的整定非常方便，参考输入响应和干扰响应可分别通过一个参数来调节。

![图7.5-1 传统Smith预估器的结构](image)

典型的积分对象可以用如下的模型表示：

$$
G_w(s) = \frac{1}{T_s} e^{-sT}, \quad G_{mv} = \frac{1}{T_s}
$$

（7.5-1）

用于控制这个对象的传统 Smith 预估器如图 7.5-1 所示，反馈信号 $v$ 加在给定值输入端。为了使干扰响应和给定值响应解耦，现考虑将反馈信号 $v$ 加在控制变量上，如图中虚线所示。在标称情况下，参考输入回路的传递函数为

$$
H_r(s) = \frac{R(s)}{1 + G_{mv}(s)R(s)G(s)} = \frac{R(s)}{T_s + R(s)} e^{-sT}
$$

（7.5-2）

取 $R(s)$ 为比例控制 $k$ 就能得到较好的响应，响应速度由 $k$ 决定。

干扰回路的传递函数为
\[
H_e(s) = \frac{G(s)}{1 + G(s)} = \frac{e^{-\theta}}{Ts + e^{-\theta}} \quad (7.5-3)
\]

虽然干扰响应和给定值响应解耦了，但是这个结构既不能抑制干扰导致的
稳态误差，也不能对干扰响应进行优化。我们知道，Smith 预估器的基本思
想是在经典反馈控制结构的基础上，引入一个预估补偿环节，使系统闭环
特征方程不含纯滞后项，从而提高了控制质量。在传统的 Smith 预估控制结构
中，\( H_a(s) \) 和 \( H_e(s) \) 的闭环特征方程相同，因此引入一个补偿环节就可以
了。在上面的系统中 \( H_a(s) \) 和 \( H_e(s) \) 的闭环特征方程不同，为了使 \( H_e(s) \) 的闭环
特征方程不含纯滞后项，需要在图 7.5-1 的反馈回路中再引入一个补偿环
节 \( M(s) \)（图 7.5-2），\( M(s) \) 应当具有这样的形式

\[
M(s) = \frac{sM_a(s)G_a(s)}{1 - sM_a(s)G_a(s)} \quad (7.5-4)
\]

式中的 \( M_a(s) \) 是个严格正则稳定的有理传递函数。那么干扰回路的传递
函数变为

\[
H_e(s) = \frac{G(s)}{1 + M(s)G(s)} = \frac{1 - \frac{M_a(s)}{T}e^{-\theta}}{Ts + \frac{M_a(s)}{T}} \quad (7.5-5)
\]

图 7.5-2 改进的 Smith 预估器

从图 7.5-3 可以看出这样选择补偿环节的物理意义：

\[
\begin{align*}
&v = (d - \hat{d})G(s) = 0 \cdot G_a(s) \\
&v_e = v + \hat{d}G_a(s) = \hat{d}G(s) \\
&\hat{d} = v_e \cdot sM_a(s) = \left( \frac{d}{T} \right) M_a
\end{align*}
\]

所以引入 \( M(s) \) 是为了估计干扰信号 \( d \)。若要使系统有零稳态误差，\( M_a(s) \) 应当满足如下的条件

\[
\lim_{s \to 0} H_e = \lim_{s \to 0} \left( 1 - \frac{M_a(s)}{T} e^{-\theta} \right) \frac{1}{Ts} e^{-\theta} = 0 \quad (7.5-6)
\]

上式可以等价为两个约束
图7.5-3 补偿器$M(s)$的结构

$$
\lim_{s \to 0} \left( 1 - \frac{M(s)}{T} e^{-\alpha s} \right) \frac{1}{T} e^{-\alpha s} = 0 \quad (7.5-7)
$$

$$
\lim_{s \to 0} \frac{d}{ds} \left( 1 - \frac{M(s)}{T} e^{-\alpha s} \right) \frac{1}{T} e^{-\alpha s} = 0 \quad (7.5-8)
$$

据终值定理和前一约束得

$$
M(s)(0) = T \quad (9)
$$

由后一约束得

$$
20M(s)(0) - \alpha T - M(s)(0) = 0
$$

因为$M_1(s)$是严格正则稳定的，所以满足要求的最小阶$M_1(s)$为

$$
M_1(s) = \frac{(\alpha T + 2\lambda T) s + T}{(\lambda s + 1)^2}, \quad (7.5-9)
$$

图 7.5-4 标称系统的响应

式中的$\lambda$作为一个可调的参数，用于优化系统干扰响应，在后面的讨论中我们还会看到，它表示了系统性能和鲁棒性之间的折衷。把$M_1(s)$代入到$H_4$
(s) 中，得到最终的干扰回路传递函数为

\[ H_s(s) = \frac{(\lambda s + 1)^2 - ((\theta + 2\lambda)s + 1)e^{-\theta s}}{(\lambda s + 1)^2 T_s} \]  \hspace{1cm} (7.5-10)

例 7.5-1 考虑上节讨论过的例子。在改进的 Smith 预估器中取 \( \tau = 0.6, \lambda = 4 \)。当模型精确时，不同方法设计的系统的响应如图 7.5-4 所示。改进方法与原来方法的给定值响应一样，干扰响应基本上一样。

![Graph 1](image1)

图 7.5-5 滞后波动到 5.5 时的响应

![Graph 2](image2)

图 7.5-6 滞后波动到 4.5 时的响应
图 7.5-7 不同的 $\lambda$ 对系统的影响 ($\theta=5.5$)

图 7.5-8 不同的 $k$ 对系统的影响 ($\theta=5.5$)

现在假设系统的纯滞后发生了 10% 的波动, 不改变两种方法的参数，它们的响应如图 7.5-5 和图 7.5-6 所示，改进方法与原来方法差不多。但是改进方法的整定要方便得多。

我们在前面提到过，可调参数 $\lambda$ 可以用于优化系统响应，调节系统鲁棒性。但是 $\lambda$ 对给定值响应和干扰响应的影响程度是不同的。$\lambda$ 对干扰响应的影响较大，$\lambda$ 越大，系统干扰抑制能力越差（图 7.5-7）。$\lambda$ 对给定值响应的影
响较小，随着 $\lambda$ 的增大，系统的响应变慢，但却很平稳。一般来说，小对应差的鲁棒性和好的干扰抑制能力，而大的 $\lambda$ 值则对应着好的鲁棒性和差的干扰抑制能力。

相比之下，参数 $k$ 对系统响应的影响很小。当 $k$ 减小时，给定值响应变慢，系统鲁棒性增强。不过 $k$ 的变化对干扰响应基本没影响（图 7.5-8）。

7.6 小结

积分对象的控制是过程控制的难点，在现有的教科书和专著中很少介绍。本章对这一问题进行了系统的讨论。

在单位反馈控制回路中，积分对象控制的困难在于系统是 2 型的。对这种系统的设计，传统的过程控制理论没有提供有效的方法。我们在最优控制理论的基础上，分别解决了 PID 控制器和 Smith 预估器的解析设计问题，得到的控制器与自衡对象控制器有着类似的特点。

我们的讨论还表明，基于传统的单位反馈控制回路设计的控制器，其性能受到很大限制，要想进一步改善性能，必须改变控制结构。为此我们先介绍了特殊积分对象控制结构，然后对它进行了改进，并推广到了一般的情况。新的方法克服了原有方法的缺陷，不但能够分别优化系统的给定值响应和干扰响应，而且系统的稳定也非常方便。

Watanabe and Ito(1979) 提出过一种修正 Smith 预估器的方案，只能在知道准确的纯滞后的情况下得到零稳定误差。Rivera et al. (1986)，Chien and Fruehauf(1990) 和 Tyreus and Luyben(1992) 分别在内模控制理论的基础上讨论过积分对象 PID 控制器整定方法。
第八章 不稳定对象控制

大多数化工过程的动态特性都是稳定的或临界稳定的。不稳定的动态特性通常只出现在少数的工业过程中（Luyken, 1978）。这类对象很不容易控制，以前针对自衡对象或积分对象所发展起来的设计方法大都不能直接用于不稳定对象的控制，困难主要来自两个方面。一方面，右半平面极点的存在使得控制系统的稳定非常困难。另一方面纯滞后和右半平面零点的同时存在极大地约束了可以达到的系统性能。本章将在前面介绍理论的基础上讨论不稳定对象控制器的设计问题。因为关于这方面的文献并不多见，所以这些研究就显得更加有意义。

8.1 不稳定对象的互质分解控制

假定不稳定对象由以下模型描述

$$ G(s) = \frac{K}{\tau s - 1} e^{-\frac{s}{\theta}} $$  \hspace{1cm} (8.1-1)

就过程控制而言，这一模型已足以描述大多数的不稳定过程。采用有理函数逼近纯滞后后，有

$$ G(s) = \frac{K}{\tau s - 1} \left(1 + \frac{\theta}{s}
ight)^n $$

这里，$n$ 是个足够大的非负整数。

做 $G(s)$ 的互质分解

$$ G(s) = \frac{N(s)}{M(s)}, \quad N(s), M(s) \in RH_\infty $$  \hspace{1cm} (8.1-2)

使满足如下方程

$$ N(s)X(s) + M(s)Y(s) = 1, \quad X(s), Y(s) \in RH_\infty $$

容易得到

$$ N(s) = \frac{K}{(s + 1)^{n+1}}, \quad M(s) = \frac{(\tau s - 1)(1 + \frac{\theta}{s})}{(s + 1)^{n+1}} $$  \hspace{1cm} (8.1-3)
对简单的情况可以直接求出 \( X(s) \) 和 \( Y(s) \)。对复杂的情况可采用如下的方法：

1. 用映射 \( s = (1 - \eta) / \eta \) 将 \( G(s) \) 变换成 \( G(\eta) \)，形成互质多项式的比

\[
G(\eta) = \frac{u(\eta)}{m(\eta)}
\]

2. 利用 Eucll 算法求多项式 \( x(\eta) \) 和 \( y(\eta) \) 使得

\[
u(\eta) x(\eta) + m(\eta) y(\eta) = 1
\]

3. 再用映射 \( \eta = 1 / (s + 1) \) 将 \( u(\eta), m(\eta), x(\eta) \) 和 \( y(\eta) \) 变换成 \( N(s), M(s), X(s) \) 和 \( Y(s) \)。

当 \( n = 0 \) 时，可以求出

\[
N(s) = \frac{K}{s + 1}, \quad M(s) = \frac{ts - 1}{s + 1}, \quad X(s) = \frac{1 + \tau}{K}, \quad Y(s) = \frac{1}{\tau}
\]

若 \( n = 1 \)，得到

\[
N(s) = \frac{K}{(s + 1)^2}, \quad M(s) = \frac{(ts - 1)(1 + \theta s)}{(s + 1)^2}, \quad X(s) = \frac{a s + b}{s + 1}, \quad Y(s) = \frac{c s + d}{s + 1}
\]

式中各参数为

\[
a = \frac{3 - \tau d + \theta d + c}{K}, \quad b = \frac{3 + \frac{1}{\tau} - \frac{1}{\theta} + \tau d}{K \theta d}, \\
 c = \frac{1}{\theta d}, \quad d = \frac{3 + \frac{1}{\tau} - \frac{1}{\theta}}{\tau d}
\]

由第三章的讨论可知，使反馈系统达到内稳定的所有控制器的集合为

\[
C(s) = \frac{X(s) + M(s)Q(s)}{Y(s) - N(s)Q(s)} \tag{8. 1-4}
\]

容易求出系统的灵敏度函数为

\[
S(s) = \frac{1}{1 + G(s)C(s)} = M(s)[Y(s) - N(s)Q(s)] \tag{8. 1-5}
\]

则最优干扰抑制问题可以表示为

\[
\min \| W(s)S(s) \|_2 = \min \| W(s)M(s)[Y(s) - N(s)Q(s)] \|_2 \tag{8. 1-6}
\]

式中的 \( W(s) \) 是权函数。由于在过程控制中，控制器大都是针对单位阶跃输
入设计的，所以可以取 $W(s) = 1/s$，因此有

$$
\| W(s)M(s) [Y(s) - N(s)Q(s)] \|_2^2
= \left\| \frac{1}{s} \left( \frac{\zeta s - 1}{\zeta s + 1} \right)^* \left( 1 + \frac{\alpha}{\eta s} \right)^* \right. \\
\left. \left[ Y(s) - \frac{K}{(s + 1)^{n+1}} Q(s) \right] \right\|_2^2
= \left\| \frac{1}{s} \left( \frac{\zeta s + 1}{\zeta s + 1} \right)^* \left( 1 + \frac{\alpha}{\eta s} \right)^* \right. \\
\left. \left[ Y(s) - \frac{K}{(s + 1)^{n+1}} Q(s) \right] \right\|_2^2
= \left\| \frac{1}{s} \left( \frac{\zeta s + 1}{\zeta s + 1} \right)^* \left( 1 + \frac{\alpha}{\eta s} \right)^* \right. \\
\left. \left[ Y(s) - \frac{K}{(s + 1)^{n+1}} Q(s) \right] \right\|_2^2
$$

另一方面，系统的渐近跟踪特性要求

$$
\lim_{s \to 0} S(s) = \lim_{s \to 0} M(s) [Y(s) - N(s)Q(s)] = 0 \quad (8.1.7)
$$

也就是要求 $Y - N(s)Q(s)$ 有一零点在 $s = 0$，即

$$
Q(0) = \frac{Y(0)}{N(0)} = \frac{Y(0)}{K}
$$

所以所有稳定的 $Q$ 的集合为

$$
Q(s) = \frac{Y(0)}{K} + sQ_1(s) \quad Q_1(s) \text{ 稳定} \quad (8.1.8)
$$

在此约束下

$$
\| W(s)M(s) [Y(s) - N(s)Q(s)] \|_2^2
= \left\| \frac{1}{s} \left( \frac{\zeta s + 1}{\zeta s + 1} \right)^* \left( 1 + \frac{\alpha}{\eta s} \right)^* \right. \\
\left. \left[ Y(s) - \frac{Ks}{(s + 1)^{n+1}} \right] \right\|_2^2
= \left\| \frac{1}{s} \left( \frac{\zeta s + 1}{\zeta s + 1} \right)^* \left( 1 + \frac{\alpha}{\eta s} \right)^* \right. \\
\left. \left[ Y(s) - \frac{Ks}{(s + 1)^{n+1}} \right] \right\|_2^2
$$

因为 $Y(s)(s + 1)^{n+1} - Y(0)$ 中必包含因子 $s$，所以欲使 $\| W(s)S(s) \|_2$ 最小化，只需令

$$
Q_1(s) = \frac{Y(s)(s + 1)^{n+1} - Y(0)}{Ks}
$$

由此得到最优的 $Q(s)$ 为

$$
Q(s) = \frac{Y(s)(s + 1)^{n+1}}{K}
$$

最优控制器在实际控制系统中无法实现，为此引入一个低通滤波器使 $Q(s)$
式中的λ是滤波器参数。λ与系统性能有着单调的关系，当λ趋向于零时控制系的趋向于最优，干扰抑制能力最强；当λ增大时，系统性能变差，鲁棒性增强。容易得到当n=0时的控制器为

$$C(s) = \frac{X(s) + M(s)Q(s)}{Y(s) - N(s)Q(s)} = \frac{(\tau\lambda + \lambda + \tau)s + \tau}{K\lambda s}$$

这是一个PI控制器。类似地，可以求出n=1时，

$$C(s) = \frac{1}{K} \frac{K(as + b)(\lambda s + 1)^2 + (c\lambda - 1)(1 + \alpha s)(cs + d)}{(cs + d)(\lambda^2 s + 2\lambda s)}$$

这个控制器的形式就比较复杂了。更大的n会导致更复杂的控制器，这对过程控制已无多大的意义了。

例8.1-1 考虑De Paor and O’malley(1985)采用过的控制对象

$$G(s) = \frac{1}{s - 1}e^{-0.5s}$$

即K=1, τ=1, θ=0.5。De Paor and O’malley(1985)给出的参数是P=1.36, f=6.94。采用本文提出的控制方法，当n=0时，系统不确定性（有物理误差）大，要求取大一些的λ, α=8；当n=1时，系统不确定性较小，取λ=0。8，它们的给定值响应和干扰响应表示在图8.1-1中。可以看到，De Paor and O’malley(1985)给出的方法（D-O法）无论是给定值响应还是干扰响应都比较差。

从系统响应来看，本文n=0方法的响应比较差，这是因为一方面我们得到的是次最优控制器，另一方面，当n=0时，系统存在较大的不确定性。那么能否进一步改善控制效果呢？根据经典的控制理论可知，降低控制器的增益将有助于减少系统闭环响应的振荡，为此将PI控制器修正为

$$C(s) = \frac{a(\tau\lambda + \lambda + \tau)s + \tau}{K\lambda s}$$

式中的α是修正系数。研究发现，当α=0.75时，闭环系统具有较好的响应。图8.1-2中给出了α取不同值时闭环系统的响应，可以看到好的给定值响应是以牺牲干扰抑制能力来获得的，尽管如此，修正方法仍具有相对较好的干扰抑制能力。
8.2 不稳定对象的 $H_\infty$ PID 控制

对控制对象进行互质分解设计控制系统的方法不但麻烦，而且容易得到高阶的控制器。这里将对本文前面介绍的方法进行修正，以便能用于不稳定对象的控制器设计。
考虑内模控制结构，设 \( Q(s) \) 表示内模控制器，\( G(s) \) 是控制对象，\( G_m(s) \)是模型，\( C(s) \) 是单位反馈回路控制器。已经证明内模控制结构和单位反馈回路可以通过下式等价起来

\[
C(s) = \frac{Q(s)}{1 - G(s)Q(s)}
\]

（8.2-1）

假定描述控制对象的传递函数为一阶加纯滞后形式，
在标称情况下，系统的灵敏度函数为

\[
S(s) = 1 - G(s)Q(s)
\]

（8.2-2）

余灵敏度函数为

\[
T(s) = G(s)Q(s)
\]

（8.2-3）

由此可以推导出从 \( r(t) \) 和 \( d(t) \) 到 \( y(t) \) 和 \( u(t) \) 的传递函数矩阵为

\[
H(s) = \begin{bmatrix}
G(s)Q(s) & G(s)(1 - G(s)Q(s)) \\
Q(s) & G(s)Q(s)
\end{bmatrix}
\]

（8.2-4）

根据内模的定义，若要使闭环系统是内稳定的，应当仅当 \( H(s) \) 中所有传递函数都是稳定的。这等价于要求 \( Q(s) \) 是稳定的，且满足如下约束

\[
\lim_{s \to \infty} S(s) = \lim_{s \to \infty} 1 - G(s)Q(s) = 0
\]

（8.2-5）

\[
\lim_{s \to 0} S(s) = \lim_{s \to 0} 1 - G(s)Q(s) = 0
\]

（8.2-6）

前面已经证明，利用现有的数学工具，严格地处理控制对象中的纯滞后是无法解析地得到 PID 控制器的。唯一可行的方法是采用有理近似逼近纯滞后。引入一阶 Taylor 近似来逼近纯滞后，则控制对象的模型可以表示为

\[
G(s) = \frac{K(1 - \vartheta s)}{Ts - 1}
\]

（8.2-7）

定义控制系统设计指标为 \( \min ||W(s)S(s)||_{\infty} \)。这里 \( W(s) \) 是性能权函数，\( W(s) = 1/s \)。根据无穷范数的定义有

\[
||W(s)S(s)||_{\infty} = ||W(s)(1 - G(s)Q(s))||_{\infty} \geq ||W(1/\theta)||
\]

（8.2-8）

欲使上式最小化，则要

\[
W(s) - W(s)G(s)Q(s) = 0
\]

由此可得最优的 \( Q(s) \) 为

\[
Q_m(s) = \frac{Ts - 1}{K}
\]

（8.2-9）

引入滤波器后的闭环系统要满足上节的内稳定要求。显然，一阶的 \( J(s) \) 不
能满足要求。不妨令

\[ J(s) = \frac{as + 1}{(\lambda s + 1)^2} \]  \hspace{1cm} (8.2-10)

式中 \( \lambda \) 是个正的常数。由此可以得到

\[ a = \frac{\lambda^2 + 2\lambda \tau + \theta \tau}{\tau - \theta}, \quad \tau \neq \theta \]  \hspace{1cm} (8.2-11)

因此

\[ C(s) = \frac{\lambda^2 + 2\lambda \tau + \theta \tau}{K(\lambda + \theta)^2} \left( 1 + \frac{1}{\lambda^2 + 2\lambda \tau + \theta \tau} \right) \frac{1}{\tau - \theta} \]  \hspace{1cm} (8.1-12)

![Graph](image)

图 8.2-1 控制参数与系统超调的关系

以上得到的控制器仍然保持了自衡对象控制器的优点，可以通过系统参数定量地估计系统的性能。在实际的控制系统中，根据经验推荐 \( \lambda \) 在 20-50 之间取值，可以获得较好的稳定性和性能。

在前面的讨论中，通过利用有理逼近模型推导出了控制器。将得到的控制用于原始对象的控制时，系统的闭环传递函数为

\[ T(s) = \frac{(\lambda^2 + 2\lambda \tau + \theta \tau) e^{-\theta}}{(\tau e - 1)(\lambda + \theta)^2} \left( s + \frac{\lambda^2 + 2\lambda \tau + \theta \tau}{\tau - \theta} \right) e^{-\theta} \]  \hspace{1cm} (8.1-13)

可以看到，当 \( \tau < \theta \) 时，\( T(s) \) 分母的后一项有个右半平面零点位于
图 8.2-2 控制参数与系统调节时间的关系

图 8.2-3 控制参数与系统摄动量的关系

\[ s_r = \frac{\theta - \tau}{\lambda^2 + 2\lambda + \sigma} \geq 0 \]  \hspace{1cm} (8.1-14)

当 \( s \rightarrow s_r \) 时，\( T(s) \) 就趋向于不稳定。因此本文提出的控制器只适用于 \( \tau > \theta \) 的对象。
8.3 不稳定对象的 $H_2$PID 控制

这里将发展一种通过对 $H_2$ 最优性能指标求解解析地推导 PID 控制器的方法。假设描述控制对象的传递函数为一阶加纯滞后的形式。引入 1 阶惯性近似，则控制对象变为

$$G(s) = \frac{K}{(\tau s - 1)(1 + \vartheta s)} \quad (8.3-1)$$

不稳定对象设计的难点主要是来自右半平面极点。根据不稳定的定义，若要使闭环系统是内稳定的，$\tau s - 1$ 应为 $Q(s)$ 的因子，即

$$Q(s) = (\tau s - 1)Q_1(s) \quad (8.3-2)$$

式中 $Q_1(s)$ 是稳定的传递函数，它必须满足如下约束

$$\lim_{s \to 1/j\omega} B(s) = \lim_{s \to 1/j\omega} 1 - G(s)Q(s) = 0 \quad (8.3-3)$$

$$\lim_{s \to 0} B(s) = \lim_{s \to 0} 1 - G(s)Q(s) = 0 \quad (8.3-4)$$

若要满足后一约束有

$$Q_1(0) = \frac{1}{K}$$

因此 $Q_1(s)$ 可以表示为

$$Q_1(s) = \frac{1}{K} (1 + sQ_2(s)) \quad (8.3-5)$$
回代到前一约束中，得到

\[ Q_2(\frac{1}{\tau}) = 0 \]

所以 \( Q_2(s) \) 可以表示为

\[ Q_2(s) = \theta + (\tau s - 1)Q_3(s) \]  \hspace{1cm} (8.3-6)

那么使闭环系统是内稳定的所 有 \( Q(s) \) 的集合为

\[ Q(s) = \frac{\tau s - 1}{K}\{1 + s[\theta + (\tau s - 1)Q_3(s)]\} \]  \hspace{1cm} (8.3-7)

在获得控制器参数化集合后，可以将前面介绍的设计方法推广到不稳定对象控制中。定义控制系统设计指标为 \( \min \| W(s)S(s) \|_2 \)。因此有

\[
\| W(s)S(s) \|_2^2 = \| W(s)(1 - G(s)Q(s)) \|_2^2 \\
= \left[ \frac{s + \frac{1}{\tau}}{s(1 + \theta s)} \{1 + s[\theta + (\tau s - 1)Q_3(s)]\} \right]_2^2 \\
= \left[ \frac{\tau s - 1}{1 + \theta s}Q_3(s) \right]_2^2
\]  \hspace{1cm} (8.3-8)

欲使上式最小化，则要求 \( Q_3(s) = 0 \)。因而最优的 \( Q(s) \) 为

\[ Q_{\text{opt}}(s) = \frac{(\tau s - 1)(1 + \theta s)}{K} \]  \hspace{1cm} (8.3-9)

\( Q_{\text{opt}}(s) \) 是非正则的，必须引入一个低通滤波器 \( J(s) \) 对它进行高通衰减。不稳定对象控制器设计中的滤波器与稳定对象的有所不同，它要满足前面给出的内稳定约束。不妨令

\[ J(s) = \frac{as + 1}{(\lambda s + 1)^2} \]  \hspace{1cm} (8.3-10)

式中 \( \lambda \) 是个正的常数。由此可以得到

\[ a = \frac{\lambda^2 \theta}{\tau^2} + \frac{\lambda^2}{\tau} + 2\lambda + \theta \]

因此

\[ C(s) = \frac{1}{K s}\frac{(1 + \theta s)(as + 1)}{(\frac{\lambda^2 \theta}{\tau} s + b)} \]  \hspace{1cm} (8.3-11)

式中

\[ b = a - 2\lambda - \theta \]

可以看出，\( C(s) \) 具有 \( PID \) 控制器的形式。假定实际 \( PID \) 控制器为

\[ \cdot 116 \cdot \]
方程 (8.3-12)

\[ C(s) = \frac{K_c}{1 + T_{rs} + T_ds} \cdot \frac{1}{T_{rs} + 1} \]

则控制器参数为

\[ K_c = \frac{a + \theta}{Kb} \quad T_r = a + \theta \]

\[ T_p = \frac{a\theta}{a + \theta} \quad T_r = \frac{a\theta}{b\tau} \]

图 8.3-1 控制参数与系统超调的关系

图 8.3-2 控制参数与系统调节时间的关系
图 8.3-3 控制参数与系统摄动量的关系

图 8.3-4 控制参数与系统恢复时间的关系

将得到的控制器用于原始对象的控制时，系统的闭环传递函数为

$$T(s) = \frac{(as + 1)(1 + \theta s)e^{-\alpha}}{(\tau_0 - 1)s + \frac{\theta \tau}{\tau} s + b} + \frac{a + 1}{(1 + \theta s)e^{-\alpha}}$$  (18)

上节在讨论不稳定对象的PID控制时，得到一个结论，即PID控制器只能用于$\theta/\tau<1$的对象。根据以上的分析可知，本文提出的控制器可以适用于$\theta/\tau>1$的对象。在实际的控制系统中，如果$\theta/\tau<1$，推荐$\lambda$在20-50之间。
间取值，可以获得较好折衷。若 $0/\varepsilon > 1$，则 $\lambda$ 要取得大些。

例 8.3-1  考虑如下的控制对象

$$G(s) = \frac{1}{s - 1}e^{-0.5s}$$

De Paor and O’malley (1985) (P-O 法) 给出的控制器参数为 $P = 1.36, I = 6.94$。Venkatashankar and Chidambaram (1994) (V-C 法) 设计的参数为 $P = 1.45, I = 10.94$。Rooteu and Lewin (1991) (R-L 法) 中的控制器参数为 $P = 1.67, I = 5$。用本文提出的控制器，参数取作 $\lambda = 1.5$，它们的给定值响应和干扰响应表示在图 8.3-5 中。从图中看到，在不稳定对象的控制中，总是伴随着较大的超调。其中 P-O 法响应最差，不但超调大，而且振荡比较剧烈。V-C 法响应比较平稳，但是抗干扰能力较弱。R-L 法干扰抑制能力较强，却振荡的比较厉害。本文方法给出了非常好的响应。

例 8.3-2  考虑如下的控制对象

$$G(s) = \frac{1}{s - 1}e^{-1.1s}$$

在本文提出的控制器中，取 $\lambda = 33$，从图 8.3-6 可以看出控制系统具有稳定的响应。仿真结果和前面的理论分析是一致的。

![图 8.3-5 控制系统的响应](image-url)
8.4 小结

在本章中，我们首先将鲁棒控制理论的互质分解方法应用到不稳定性
滞系统的设计中，针对系统的干扰抑制问题解析地得到了一类镇定控制器。
该控制器在低阶时表现为 PI 控制器的形式。

互质分解方法比较麻烦，而且容易产生高阶控制器。为此，我们通过对
本文前面发展的 $H_{\infty}$ 设计方法进行修正，发展了一种较简单的解析设计方案。
它不是利用控制对象的互质分解，而是从无穷范数的定义出发推导控制器。
通过引入适当的滤波器满足系统内稳定约束。当 $\tau > 0$ 时，这种控制器可以
镇定不稳定对象并给出满意的性能。本章还基于 $H_2$ 控制理论讨论了不
稳定对象的控制问题，其创新之处在于通过系统内稳定约束而不是控制对
象的互质分解，得到了镇定不稳定对象的控制器集合，得到的控制器突破了
$\tau > 0$ 的限制。这两类方法都能够提供定量的性能估计。
第九章  数字控制系统设计

计算机具有强大的计算及逻辑判断功能，所以很自然地成为实现自动控制系统的主要手段。计算机控制系统的设计可以在离散域进行，也可以在连续域进行，然后再变换到离散域。本章主要讨论控制器的离散域设计问题。


尽管 Dahlin 控制器早就被提出来了，并且有许多专著对它进行了深入的研究，但是目前仍存在一些问题值得讨论，譬如说控制器产生振铃的真正原因以及克服振铃的方法等。根据本文前面的讨论可知，Dahlin 控制器与其他类型控制器都可以等价起来，因此讨论这个题目就具有非常广泛的意义。

9.1  修正 Z 变换

典型的计算机控制系统如图 9.1-1 所示。由于计算机只能处理数字信号，所以必须在模拟信号输入通道里加入 A/D 变换器，通过采样将连续信号转换成数字信号。计算机经过处理后产生数字指令信号，经过 D/A 变换器转换成相应幅值的模拟信号。这些模拟信号只是采样频率点上的脉冲信号而不是连续信号，所以要引入零阶保持器（ZOH），它的作用是在两个采样频率点之间保持一个脉冲值不变。这样就能得到连续的模拟信号。设数
字控制系统采样频率为 $T_s$，零阶保持器的传递函数为

$$G_k(s) = \frac{1 - e^{-rT_s}}{s} \quad (9.1-1)$$

![图9.1-1 计算机控制系统](image)

在连续系统分析时，应用拉氏变换作为数学工具将微分方程转换为代数方程，建立了以传递函数为基础的复频域分析方法，使问题变得非常简单。在离散系统的分析中也有类似的变换来建立一套分析方法，这种变换就是 $z$ 变换。如果有连续信号 $y(t)$ 在周期为 $T_s$ 的时间间隔上被采样，$y(t)$ 在时刻 $nT_s$ 的采样值为 $y(nT_s)$，$n = 0, 1, 2, \ldots$，它的 $z$ 变换定义为

$$Y(z) = Z\{y(t)\} = \sum_{n=0}^{\infty} y(nT_s)z^{-n} \quad (9.1-2)$$

过程控制系统与其它类型系统的主要区别之一是在过程控制系统中常常含有纯滞后，因此不能用于时滞系统的方法在过程控制系统分析中意义不大。在离散控制系统中，纯滞后可能不是采样时间的整数倍，此时常规 $z$ 变换不能直接使用，必须使用扩充后的 $z$ 变换，或者称修正 $z$ 变换。

假设控制对象由下面的传递函数描述

$$G(s) = G_0(s)e^{-\theta} \quad (9.1-3)$$

式中 $G_0(s)$ 是 $G(s)$ 中不含纯滞后的一部分。令

$$\theta = NT_s + \theta'$$

式中的 $N$ 是在 $\theta$ 中采样次数的最大整数值。因此 $0 < \theta' < T_s$，取 $G(s)$ 的 $z$ 变换

$$G(z) = Z\{G_0(s)e^{-\theta}\} = z^{-N}Z\{G_0(s)e^{-\theta'}\} \quad (9.1-4)$$

设 $m = 1 - \theta'/T_s$，则 $G_0(s)e^{-\theta'}$ 的 $z$ 变换可由修正 $z$ 变换得出

$$Z\{G_0(s)e^{-\theta'}\} = Z_m\{G_0(s)\} = G(z, m) \quad (9.1-5)$$

下面推导修正 $z$ 变换的表达式。已知系统信号为 $y(t - \theta)$，那么

$$Z\{y(t - \theta)\} = \sum_{n=0}^{\infty} y(nT_s - NT_s - \theta')z^{-n}$$

\[\text{122}\]
\[\sum_{n=0}^{\infty} y[(n - N - 1)T_s + mT_s]z^{-n}\]

令 \(l = n - N - 1\)，可得

\[Z\{y(l - \theta)\} = \sum_{l=0}^{\infty} y(lT_s + mT_s)z^{-l-N-1}\]

\[= z^{-l}\left(z^{-l}\sum_{l=0}^{\infty} y(lT_s + mT_s)z^{-l}\right)\]

修正 \(z\) 变换就定义为

\[G(z, m) = z^{-l}\sum_{l=0}^{\infty} y(lT_s + mT_s)z^{-l}\]  \hspace{1cm} (9.1-6)

![ZOH](exp(-0.45) \quad s+1 \quad y)

图9.1-2 具有纯滞后的控制对象

为了说明修正 \(z\) 变换的应用，讨论图 9.1-2 中控制对象的离散化

\[G(z) = Z\left\{\frac{1 - e^{-T_s} - e^{-0.45s}}{s + 1}\right\}\]

\[= (1 - z^{-1})Z\left\{\frac{e^{-0.45s}}{s(s + 1)}\right\}\]

\[= (1 - z^{-1})Z\left\{\frac{1}{s(s + 1)}\right\}\]

设系统采样时间是 \(T_s = 1\) 秒，则 \(m = 0.6\)，我们得到

\[G(z) = (1 - z^{-1})\left\{\frac{z^{-1}}{1 - z^{-1} - \frac{e^{-0.45z^{-1}}}{1 - e^{-1}z^{-1}}}\right\}\]

\[= z^{-1}\frac{(1 - e^{-s}) + (e^{-s} - e^{-1})z^{-1}}{1 - e^{-1}z^{-1}}\]

\[= z^{-1}\frac{0.450 + 0.182z^{-1}}{1 - 0.386z^{-1}}\]

用差分方程形式表示为

\[y(n) - y(n - 1) = 0.450a(n - 1) + 0.182a(n - 2)\]

因此，我们可以以前一采样时刻的输出和输入表示第 \(n\) 次采样时刻的输出。
9.2 单变量 Dahlin 控制器设计

讨论控制器振铃问题之前有必要回顾一下 Dahlin 控制器的设计过程。考虑图 9.2-1 所示的单位反馈控制回路，其中 $C(s)$ 是控制器，$G(s)$ 是控制对象，那么系统的闭环传递函数为

$$T(z) = \frac{C(z)G(z)}{1 + C(z)G(z)}$$  \hspace{1cm} (9.2-1)

![电路图](image)

图9.2-1 单位反馈离散控制系统

若 $T(z)$ 是已知的，则控制器的综合公式为

$$C(z) = \frac{1}{G(z)} \cdot \frac{T(z)}{1 - T(z)}$$  \hspace{1cm} (9.2-2)

式中的 $T(z)$ 应当这样选择，它必须使控制器是物理上可实现的，因此系统中不能包含有预见作用的项。对一阶惯性加纯滞后控制对象

$$G(z) = K z^{-N-1} \frac{1 - e^{-\tau}}{1 - e^{-\tau}z^{-1}}$$  \hspace{1cm} (9.2-3)

式中 $\tau$ 是时间常数，$T$ 是采样周期，$N$ 是过程纯滞后中的采样周期数。Dahlin 控制器规定闭环控制系统的传递函数为

$$T(z) = \frac{1 - e^{-\nu}}{1 - e^{-\nu}z^{-1}z^{-N-1}}$$  \hspace{1cm} (9.2-4)

如果表示在复频域中就是

$$T(s) = \frac{1}{\lambda s + 1} e^{-\theta s}$$  \hspace{1cm} (9.2-5)

其中 $\lambda > 0, \theta = NT \tau$。由此得到控制器为

$$C(z) = \frac{\Omega(1 - e^{-\tau}z^{-1})}{K(1 - e^{-\tau}z^{-1})}$$  \hspace{1cm} (9.2-6)

其中

$$\Omega = \frac{(1 - e^{-\tau})}{1 - e^{-\tau}z^{-1} - (1 - e^{-\tau})z^{-N-1}}$$  \hspace{1cm} (9.2-7)
式中的 $\lambda$ 是在实际根据试验选择的可调参数，它可以用于调整系统的性能和鲁棒性。

过程控制中常见的另外一种算法是最小拍算法，它的出发点是要求系统给定值响应在第一个采样时刻之后所有采样时刻上的偏差均为零，也就是

$$
T(z) = z^{-N-1}
$$

容易看出最少拍算法实际上是 Dahlin 算法的特例，它等价于 $\lambda$ 趋于零时的情况。

### 9.3 $\frac{1}{\tau}$ 阶控制对象的振铃

传统观点认为，$G(z)$ 中含有接近于 $-1$ 的极点是产生振铃的原因（Dahlin, 1968; Zafiriou and Morari, 1985), Zhang (1992) 认为产生振铃的真正原因是 $Q(z)$ 而不是 $G(z)$ 中含有接近于 $-1$ 的极点。本文则认为这两种说法都不够确切。考虑一般的情形，纯滞后 $\theta$ 不是采样周期 $T$ 的整数倍。利用修正 $z$ 变换可以求出控制对象为

$$
G(z) = Z\left\{ \frac{1 - e^{-\tau_1}z}{s} \frac{K_0 e^{-\theta}}{\tau s + 1} \right\}
$$

$$
= \frac{K}{\tau} \left[ Z\left\{ \frac{e^{-\theta}z}{s(s + \tau z^{-1})} \right\} - Z\left\{ \frac{e^{-\theta}z}{s(s + \tau z^{-1})} \right\} \right]
$$

$$
= \frac{K}{\tau} (1 - z^{-1}) z^{-N} Z\left\{ \frac{1}{s(s + \tau z^{-1})} \right\}
$$

$$
= \frac{K}{\tau} (1 - z^{-1}) z^{-N} Z\left\{ \frac{1 - \frac{e^{-nT}}{z^{-1}}}{1 - \frac{e^{-\frac{nT}{z^{-1}}}}{z^{-1}}} \right\}
$$

$$
= Kz^{-N-1} \left[ \frac{1 - \frac{e^{-nT}}{z^{-1}}}{1 - \frac{e^{-\frac{nT}{z^{-1}}}}{z^{-1}}} \right]
$$

期望的闭环传递函数为

$$
T(z) = Z\left\{ \frac{1 - e^{-\tau_1}z}{s} \frac{e^{-\theta}}{\lambda s + 1} \right\}
$$
\[ z^{-y-1}(1-e^{\frac{wT}{y}}) + z^{-1}(e^{\frac{wT}{y}} - e^{-\frac{T}{y}}) \]

考虑到 \( U(z) = Q(z)R(z) = T(z)R(z)/G(z) \)，振铃现象一定是由 \( T(z) \) 或 \( G(z) \) 引起的。易知 \( T(z) \) 的极点为

\[ z_1 = e^{\frac{T}{y}} > 0, \quad z_2 = 0 \]

它们不会产生振铃现象，\( G(z) \) 零点的位置要分几种情况讨论。当纯滞后 \( \theta \) 是采样周期 \( T \) 的整数倍时，\( G(z) \) 无零点；当纯滞后 \( \theta \) 不是采样周期 \( T \) 的整数倍时，因为 \( e^{-\frac{T}{y}} < 1 \)，所以

\[ z_3 = e^{-\frac{T}{y}} - e^{-\frac{T}{y}} < 0 \]

这时

\[ Q(z) = \frac{(1 - e^{-\frac{wT}{y}}) + z^{-1}(e^{\frac{wT}{y}} - e^{-\frac{T}{y}})}{1 - e^{-\frac{T}{y}}z^{-1}} \]

\[ = \frac{1 - e^{-\frac{T}{y}}z^{-1}}{K(1 - e^{-\frac{wT}{y}})} \frac{1}{1 - z_3z^{-1}} \]

（9.3-4）

在离散控制系统中，形成 \( (1 - z_3z^{-1})^{-1} \)，\( z_4 < 0 \) 的环节在阶跃输入的作用下总是会产生振铃现象，振铃的衰减率由 \( z_3 \) 的位置决定，关于这方面的讨论可见 Dahlin (1968)。

至此得到如下结论：

1. 如果纯滞后 \( \theta \) 是采样周期 \( T \) 的整数倍，即使是控制对象存在不确定性也不会产生振铃现象。

2. 如果纯滞后 \( \theta \) 不是采样周期 \( T \) 的整数倍，则由于零阶保持器的引入可能会使 \( G(z) \) 中包含一个（而不是多个）单位圆内实的负零点，这个零点既是 \( Q(z) \) 的极点又是 \( G(z) \) 的极点，它是产生振铃的本质原因。

3. 参数 \( \lambda \) 不会导致振铃现象。但当产生振铃时，\( \lambda \) 以一种非常复杂的形式影响振铃的幅度，振铃的衰减率则由 \( z_3 \) 的位置决定。

那么如何消除振铃呢？迄今为止已发展了两类消除振铃的方法，一种是 Dahlin 提出的修正控制器 \( G(z) \) 极点的方法，一种是 Zhang (1992) 提出的修正期望闭环响应的方法。

在 Dahlin 提出的方法中，他建议简单地消去跳动极点而相应地调整增
益，通过在要消除的那一项中令 $z = 1$ 来求得。虽然这种实际做法有时可以将振铃减少到可以接受的程度，但还是由于分析工具的缺乏和当时并没有认识到人为的噪声 $C(z)$ 的极点会对系统性能产生什么样的影响。也不知道这种方法有什么局限，从而使 Dahlin 控制器的使用受到很大限制。本文的分析为这个问题提供了很好的解释。根据上面的讨论可知，$Q(z) = C(z) \cdot (1 - G(z)) C(z)$，所以消除 $C(z)$ 的振铃极点就等价于消除 $Q(z)$ 的一个振铃极点，这是实际上是企图把 $\theta$ 当作 $T_z$ 的整数倍来处理。

不过，Dahlin 给出的设计方法会导致两个方面的问题。一方面，Dahlin 方法利用 $\theta$ 是 $T_z$ 的整数倍时的 $T(z)$ 和 $\theta$ 不是 $T_z$ 的整数倍时的 $G(z)$ 来求取控制器 $C(z)$，并对其进行修正，这只能抵消 $Q(z)$ 中的一个振铃极点，而此时 $(1 - G(z)C(z))^{-1}$ 有可能会引入新的振铃极点，因为

$$
Q(z) = \frac{1}{K} \frac{(1 - e^{-\frac{T_z}{T}})(1 - e^{-\frac{T_z}{T}} z^{-1})}{[1 - e^{-\frac{T_z}{T}} z^{-1}] - (1 - e^{-\frac{T_z}{T}}) z^{-N-1}] (1 - e^{-\frac{T_z}{T}}) - (1 - e^{-\frac{T_z}{T}})(1 - e^{-\frac{T_z}{T}}) z^{-N-1}}
$$

另一方面，在 Dahlin 控制器中 $N$ 被定义为最接近 $\theta$ 的采样周期次数，若 $NT_z < \theta$，则期望的闭环响应

$$
T(z) = \frac{e^{-\frac{NT_z}{T}}}{\lambda s + 1}
$$

是不可实现的。因为控制器是针对 $NT_z$ 的纯滞后设计的，而实际的纯滞后是 $\theta$，所以系统实际阶跃响应也不会是指数曲线。若 $NT_z > \theta$，则修改后的系统闭环传递函数为

$$
T(z) = \frac{(1 - e^{-\frac{T_z}{T}})(1 - e^{-\frac{T_z}{T}})z^{-N-1}}{[1 - e^{-\frac{T_z}{T}} z^{-1}] - (1 - e^{-\frac{T_z}{T}})z^{-N-1}] (1 - e^{-\frac{T_z}{T}}) - (1 - e^{-\frac{T_z}{T}})(1 - e^{-\frac{T_z}{T}})z^{-N-1}}
$$

它的形式非常复杂，使系统的性能分析变得很困难。

Zhang (1992) 提出将期望闭环响应取为

$$
T(z) = \frac{(1 - e^{-\frac{T_z}{T}})z^{-N-1}}{1 - e^{-\frac{T_z}{T}} z^{-1}} \frac{1 - z z^{-1}}{1 - \lambda s + 1}
$$

于是 $T(z)$ 和 $G(z)$ 中的振铃极点相互抵消，$Q(z)$ 也不包含振铃极点。但是这种方法修改了期望闭环传递函数，容易得到的控制器比较复杂。

这里将发展一种新的控制器设计方法。首先，规定 $N$ 是在 $\theta$ 中最大的
采样周期次数，其次假设控制对象是

\[ G(s) = \frac{Ke^{-(N+1)r_s}}{s + 1} \tag{9.3-8} \]

期望的闭环系统响应是

\[ T(s) = \frac{e^{-(N+1)r_s}}{\lambda s + 1} \tag{9.3-9} \]

经过零阶保持器法离散化后得到

\[ Q(z) = \frac{(1 - e^{-T_z})(1 - e^{-T_z}z^{-1})}{K(1 - e^{-T_z})(1 - e^{-T_z}z^{-1})} \tag{23} \]

\[ C(z) = \frac{1 - e^{-7.6}}{1 - e^{-7.6}z^{-1} - (1 - e^{-7.6})z^{-N}} - \frac{1 - e^{-7.6}z^{-1}}{K(1 - e^{-7.7})} \tag{9.3-10} \]

在以上方法中，控制对象的纯滞后被延长了 T' = T'，由于控制模型中的纯滞后时间通过近似得到，而在实际中为了得到较好的控制效果 T'，常常选取很小，所以这种设计方法是适宜的，它从采样周期的原始原因入手，有效的消除了振铃现象。

例 9.3-1 设控制对象为

\[ G(s) = \frac{1}{(0.5s + 1)(s + 1)^2(2s + 1)} \]

把控制对象的模型当成二阶惯性加纯滞后模型，其传递函数为

\[ G_m(s) = \frac{e^{-1.46z}}{3.34s + 1} \]

若取采样周期为 T = 1，则 N = 1, T' = 0.46, m = 0.54, 对上述模型进行离散化，得到

\[ G_m(z) = \frac{z^{-2}}{1 - 0.7413z^{-1}} \]

因为 \( e^{-7.6} = 0.8507 < 1 \)，所以用传统方法设计控制器肯定会产生振铃现象。

按 Dahlin 提出的修改方法设计得到的控制器为

\[ C(z) = \frac{1.5208(1 - 0.7413z^{-1})}{(1 - z^{-1})(1 + 0.3935z^{-1})} \tag{28} \]

按 Zhang 提出的方法设计控制器，得到

\[ C(z) = \frac{1.5208(1 - 0.7413z^{-1})}{1 - 0.6065z^{-1} - 0.2271z^{-2} - 0.1664z^{-3}} \tag{29} \]
本文方法设计的控制器为
\[ C(z) = \frac{1.5208(1 - 0.7413z^{-1})}{1 - z^{-1}} \]  (30)

图 9.3-1 闭环系统阶跃响应

图 9.3-2 控制变量输出

它具有最简单的形式。几种控制器闭环响应及其引起的控制变量的输出分别表示在图 9.3-1 和图 9.3-2 中，本文设计方法的优越性是显而易见的。

注意，对应 Dahlin 修改方法有
\[ Q(z) = \frac{1.5208(1 - 0.7413z^{-1})}{1 - 0.6005z^{-1} - 0.1724z^{-2} + 0.1667z^{-3}} = \frac{1.5208(1 - 0.7413z^{-1})}{\left[1 - (0.5404 + 0.2340j)z^{-1}\right]\left[1 - (0.5404 - 0.2340j)z^{-1}\right](1 + 0.4804z^{-1})} \]

所以新的振铃极点被引入。这个极点的位置是在 \( z = -0.4804 \)，而不是 \( z = \frac{1}{1 + 0.3835} \)。

### 9.4 二阶控制对象的振铃

上节分析了控制对象为一阶时 Dahlin 控制器产生振铃的本质原因，发展了一种能够避免振铃的较好的设计方法。本节讨论二阶对象 Dahlin 控制器存在振铃的可能性。根据前面的讨论，如果纯滞后 \( \theta \) 是采样周期 \( T \) 的整数倍，则纯滞后的离散化不会引起振铃，那么只需讨论无滞后的情况。考虑无滞后控制对象

\[ G(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)} \] (9.4-1)

当 \( \tau_1 = \tau_2 = \tau \) 时

\[ G(z) = KZ\left\{ \frac{1 - e^{-T_s}}{s} \frac{1}{(\tau s + 1)^2} \right\} = K(1 - z^{-1})Z\left\{ \frac{1}{s(\tau s + 1)^2} \right\} \]

\[ = K(1 - z^{-1})Z\left\{ \frac{z}{z - 1} - \frac{z}{z - e^{-\frac{T_s}{\tau}}} - \frac{\tau^{-1}T_s e^{-\frac{T_s}{\tau}T_s}}{(z - e^{-\frac{T_s}{\tau}})^2} \right\} \]

\[ = K\left\{ \frac{1 - e^{-\frac{T_s}{\tau}} - \tau^{-1}T_s e^{-\frac{T_s}{\tau}}}{(z - e^{-\frac{T_s}{\tau}})^2} \left(1 - \tau^{-1}T_s e^{-\frac{T_s}{\tau}}\right) e^{-\frac{T_s}{\tau}} \right\} \] (9.4-2)

\[ G(z) \] 的零点是

\[ z = \frac{(1 - \tau^{-1}T_s - e^{-\frac{T_s}{\tau}}) e^{-\frac{T_s}{\tau}}}{1 - e^{-\frac{T_s}{\tau}} - \tau^{-1}T_s e^{-\frac{T_s}{\tau}}} \]

当 \( \tau_1 \neq \tau_2 \) 时，有

\[ G(z) = KZ\left\{ \frac{1 - e^{-T_s}}{s} \frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)} \right\} \]
\[ K(1-z^{-1})Z_k\left(\frac{1}{z(\tau_1s + 1)(\tau_2s + 1)}\right) \]

\[ = K(1-z^{-1})\left[\frac{z}{z-1} - \frac{\tau_1^{-1}}{(\tau_1^{-1} - \tau_2^{-1})}\left(\frac{1}{z-e^{-\tau_1^{-1}}} - \frac{1}{z-e^{-\tau_2^{-1}}}\right)\right] \]

\[ = \frac{K}{(\tau_1^{-1} - \tau_2^{-1})}\left(\frac{e^{-\tau_1^{-1}}}{(1-e^{-\tau_1^{-1}})} - \frac{e^{-\tau_2^{-1}}}{(1-e^{-\tau_2^{-1}})}\right) + \]

\[ z(\tau_1^{-1} - \tau_2^{-1} - \tau_1^{-1}e^{-\tau_2^{-1}} + \tau_2^{-1}e^{-\tau_1^{-1}}) + \]

\[ \frac{K}{(\tau_1^{-1} - \tau_2^{-1})}\left(\frac{e^{-\tau_1^{-1}}}{(1-e^{-\tau_1^{-1}})} - \frac{e^{-\tau_2^{-1}}}{(1-e^{-\tau_2^{-1}})}\right) + \]

\[ \frac{K}{(\tau_1^{-1} - \tau_2^{-1})}\left(\frac{e^{-\tau_1^{-1}}}{(1-e^{-\tau_1^{-1}})} - \frac{e^{-\tau_2^{-1}}}{(1-e^{-\tau_2^{-1}})}\right) \]

(9.4-3)

\[ G(z) \] 的零点是

\[ z = \frac{e^{-\tau_1^{-1}e^{-\tau_2^{-1}}} - e^{-\tau_2^{-1}e^{-\tau_1^{-1}}} - e^{-\tau_1^{-1}e^{-\tau_2^{-1}}} - e^{-\tau_2^{-1}e^{-\tau_1^{-1}}}}{\tau_1^{-1}(1-e^{-\tau_1^{-1}}) - \tau_2^{-1}(1-e^{-\tau_2^{-1}})} \]

因此 \( G(z) \) 的零点位置由 \( \tau_1, \tau_2 \) 和 \( T \) 决定，如果它位于单位圆内的负轴上，则会引起振铃。

当期望闭环传递函数给定后，就可以用下式求出控制器

\[ C(z) = \frac{1}{G(z)} \frac{T(z)}{1-T(z)} \]

（9.4-4）

如果采用 Dahlin 修正方法设计控制器，要在包含负极点的那一项中令 \( z = 1 \)。然而，做了这样的修改后，从系统输入到控制器输出的传递函数变为

\[ \frac{T(z)}{G(z)} = \frac{C(z)}{1 + G(z)C(z)} \]

（9.4-5）

考虑到 \( 1 + G(s)C(s) \) 仍有可能引人负极点，所以 Dahlin 修正设计方法也不能保证消除控制对象有理部分引起的振铃。为此提出如下设计方法。首先，选择适当的采样周期使得纯滞后 \( \theta \) 是采样周期 \( T \) 的整数倍，以克服纯滞后离散化引人的负极点。然后，采用期望闭环传递函数的方法消除控制对象有理部分离散化引人的负极点。期望闭环传递函数为

\[ T(z) = \frac{z - z_3}{z(1 - z_3)} \]

（9.4-6）

式中的 \( z_3 \) 是控制对象有理部分包含的负极点。

例 9.4-1 考虑如下控制对象

\[ G(s) = \frac{5}{(5s + 1)(2s + 1)} \]

取 \( T_e = 1 \)，对控制对象进行离散化，有
$$G(z) = \frac{0.1990(z + 0.7919)}{(z - 0.8187)(z - 0.6065)}$$

它有一个负零点

$$z = -\frac{0.0315}{0.0398} = -0.792$$

设期望闭环传递函数是一阶函数, 并且 $\lambda = 1$, 则控制器为

$$C(z) = \frac{3.1764(z - 0.8187)(z - 0.6065)}{(z + 0.7919)(z - 1)}$$

按照本文提出的方法修正期望闭环传递函数后得到的控制器是

$$C(z) = \frac{1.7726(z - 0.8187)(z - 0.6065)}{(z + 0.2794)(z - 1)}$$

系统的响应如图 9.4-1 和图 9.4-2 所示。尽管在修正的控制器中包含有负极点, 但是控制器输出并没有振铃。

![图 9.4-1 控制系统的响应](image)

例 9.4-2 假定控制系统具有如下的传递函数 (Zafiriou and Morari, 1985)

$$G(z) = \frac{1}{(5s + 1)(2s + 1)e^{-s}}$$

仍然取 $T_s = 1, \lambda = 1$, 则离散控制对象为

$$G(z) = \frac{0.0398(z + 0.7919)}{z(z - 0.8187)(z - 0.6065)}$$

修正前的控制器是
图 9.4-2 控制器输出的响应

\[ C(z) = \frac{15.8824(z - 0.8187)(z - 0.6065)}{(z - 1)(z + 0.6321)(z + 0.7919)} \]

修正后的控制器是

\[ C(z) = \frac{8.8643(z - 0.8187)(z - 0.6065)}{(z - 1)(z + 0.3161 + 0.4237i)(z + 0.3161 - 0.4237i)} \]

系统的响应如图 9.4-3 和图 9.4-4 所示。本文方法的改进是非常显著的。
9.5 小结

Dahlin 控制器设计方法是一种具有很多优点的独特设计方法。几乎所有的过程控制教科书中都有专门的章节介绍它。但是，在过程控制实践中的应用却受到一定限制，主要原因是会产生所谓的振铃现象。振铃现象不仅出现在 Dahlin 控制器的设计中，而且存在于大多数离散控制算法中。人们既不能肯定什么时候会产生振铃，也不知道如何才能完全克服它。本章通过系统输入到控制器输出的传递函数证明，振铃的产生与期望闭环传递函数无关，而在于控制对象离散化时可能产生的负零点。如果控制对象是一阶的，则负零点只来自纯滞后。如果控制对象是二阶或高阶的，不仅纯滞后会导致负零点，有理部分也会导致负零点。本章还讨论了新的设计方法，该方法能够克服已有方法的局限，有效消除振铃。
第十章 结论与展望

过程控制是一门与工业生产过程联系十分紧密的学科。随着科学技术的发展，工业生产规模日趋扩大，对过程控制系统提出了更高的要求，暴露出传统过程控制理论的一些不足之处。如何在现代控制理论和鲁棒控制理论研究的基础上发展新型的过程控制理论已经成为摆在人们面前的一个亟待解决的问题。本文在这方面进行了初步的探索。

我们在这里强调过程控制理论的研究，并非是指单纯地将控制理论的最新成果引入到过程控制中，从而使其理论化和复杂化，而是指希望发展更简单更有效的控制手段，来满足控制工程实践的要求。对过程控制而言，一个好的理论必须对工程人员是有效的，同时还要考虑到使用者的潜在需要和技术水平。过程控制研究人员一定要明确，在过程控制中采用新技术的目的不是为了追求技术本身，而是要获得更高的经济效益，因此特别要强调过程控制理论应当从实际的方向出发来进行研究，研究成果不但要具有理论根据（而不仅仅是经验），还要容易被工程人员接受。这是当前赋予过程控制理论工作者的重要任务。

本文将 H2, H∞最优控制理论和鲁棒控制理论的设计方法引入到过程控制中，研究了具有纯滞后 объект对象、积分对象和不稳定对象 PID 控制器、Smith 预估器和 Dahlin 控制器设计问题。通过对最优干扰抑制问题求解解析地得到了控制器，并且建立了新设计方法与几类传统设计方法之间的等价联系。在此基础上讨论了系统时域性能（如超调和上升时间）定量估计问题和控制系统鲁棒性的衡量问题，并探讨了离散控制系统的实现问题。其创新之处在于

- 引入最优性能指标，使系统性能得到全面优化。
- 通过解析设计方法提供设计公式，简化了设计过程。
- 建立了最优设计方法与常规时域性能指标之间的联系。
- 定义了鲁棒度的概念，提供了方便有效的鲁棒整定方法。
- 研究了振铃产生的本质原因，给出了有效的克服方法。

本文给出的多数设计结果可以直接应用到现有的控制装置中，而不需
要新的硬件设备，其唯一的要求是要知道控制对象的模型，并且这个模型可以是不精确的。相信这些设计方法对工程师们是具有吸引力的。

就过程控制整个领域而言，本文的研究内容显得很单薄，作者目前正

在研究和准备研究的内容大致有如下几个方面。

实际物理装置具有一定的限制，其输出不可能无限大，这引出了两个与

实际应用密切相关的问题，就是具有控制输出约束的控制器设计问题和控

制器抗积分饱和设计问题。如何设计控制器当然是非常重要的方面，但是还

有一个被人们忽略的方面是这两个问题有无联系，究竟是按控制输出约束

设计的控制器效果好还是按抗积分饱和设计的控制器效果好。

作为一种重要的控制手段，Smith 预估器在过程控制实践中得到了大

量应用。但是以往的研究都是基于传统的 Smith 预估控制结构进行的，这个

结构是不是最佳的，能不能再进行有效的改进，都很值得进一步研究。

迄今为止，讨论积分对象控制问题的文献还很少。诚如本文讨论的那

样，已有的方法得到的控制器还具有一定的局限，传统的控制结构较大地限

制了系统的性能，而新控制结构的鲁棒性相对较差。总地来说，这一领域还

有许多有待探索的问题。

本文虽然将自衡对象 PID 控制器设计方法推广到了不稳定对象的控

制中，但是没能将 Smith 预估器推广到不稳定对象的控制中。目前已经被发

采用传统的 Smith 预估控制结构无法实现不稳定对象的控制，今后的研究

将主要集中在如何对原有的方法进行修正。

在经典的过程控制理论和实践中，串级控制是一种非常重要的控制手

段，它的整定方法基本上沿袭了常规的 PID 控制器整定方法，再加以修正。

近年来，开始有人研究这一控制结构的鲁棒设计方法，但改进并不明显。能
否在串级控制中引入其他的控制器（如 Smith 预估器）、能否解析地设计串

级控制器以及如何分析串级控制结构的鲁棒性还有待于进一步的研究。

与单变量控制系统设计相比，多变量控制系统设计显得异常复杂，从数

学的角度讲，为了满足更多的约束，问题的解的非常复杂是自然的，但是

控制实践则要求这个解越简单越好。从多变量控制理论应用于实际过程控

制的情况来看，普遍采用的设计方法有两大类：一类是考虑了不同回路间耦

合的解耦或近似解耦设计方法，另一类是忽略不同回路间耦合的多回路设

计方法。它们的共同特点是，可以得到较低阶次的控制器。在存在不确定性的

过程控制系统中，究竟是解耦控制效果好还是多回路控制效果好，怎样分
析多变量时滞系统的鲁棒性以及如何通过简单有效的方法设计控制器等是当前多变量过程控制研究亟待解决的问题。

从目前控制理论的发展趋势来看，整个世界范围内都非常重视控制理论的应用研究，而过程控制则是这其中最重要的一个研究方向。由于在最优控制理论和鲁棒控制理论方面的研究越来越成熟，过程控制理论的发展正面临新的突破。相信这种突破会给控制理论的应用面貌带来较大改观。
參 考 文 獻


auto-tuners, *IEEE Control Syst. Maga.* 8, pp. 41-47


Ioannides, A. C., G. J. Rogers and V. Latham (1979). Stability limits of a


Linnemann, A., I. Postlethwaite and B. D. O. Anderson (1989). Almost dis-


Venkata Shankar, V. and M. Chidambaram (1994). Design of P and PI Con-


- 150 -


程鹏 (1990). 多变量控制线性控制系统, 北京航空航天大学出版社

陈克复 (1984). 造纸机液浆料流体流体动力学, 轻工业出版社


蒋慰孙, 周金寿 (1988). 过程控制工程. 现加工出版社
金以慈主编 (1993). 过程控制. 清华大学出版社
刘晨辉 (1984). 多变量过程控制解析理论. 水力电力出版社. see also Lecture
庞福胜编 (1992). 线性多变量系统. 华中理工大学出版社
沈平编著 (1985). 时间滞后调节系统. 化学工业出版社
孙贤昌等 (1993). 造纸过程模型与控制. 浙江大学出版社
谭文, 陈亚民 (1994). 有限维线性系统 H∞理论进展述评, 控制与决策, 9(2), pp. 81-87
王百五 (1965). 我国古代自动装置的原理分析及其成就探讨. 自动化学报, 3(2), pp. 57-65
王东初, 任秀珍 (1986). 工业过程控制系统设计范例. 科学出版社
席裕庚 (1993). 过程控制. 四川科学技术出版社
解学书, 钟宜生编著 (1994). H∞控制理论. 清华大学出版社
叶庆凯 (1989). 线性系统与多变量控制. 国防工业出版社
曾广铭译 (1992). 计算机反馈系统的鲁棒性设计. 科学出版社
张汉祥. 消除振铃现象的一种改进方法. 自动化学报, 1992, 18(4), pp508-512
致谢

值此报告完成之际，谨向我的合作导师许晓鸣教授和孙优贤院士表示诚挚的感谢。本文的研究工作自始至终在他们的指导下进行。他们不仅在工作上帮助我，还在生活上给予许多关心。同时，衷心感谢席裕庚教授和吴铁军教授等许多老师给我的关心和帮助。

与宋执环博士和程储旺博士的讨论，对本文的研究工作颇有启发；张文杰硕士和顾文生博士后给与许多无私的帮助，在此一一并致谢。

对沈捷老师、林晓棠老师、陈龙老师、林庆女士、孙飞小姐和吴沂军老师两年来的热心帮助表示衷心的感谢。

感谢“中国博士后科学基金”和国家“九五”攻关项目对本文工作的资助。

尤其要感谢我的妻子林晨和我俩的家人对我工作的理解和支持以及生活中无微不至的关怀，没有他们的支持和鼓励，完成本文的工作是很困难的。
博士生期间发表的学术论文

[3] 王征, 张卫东, 孙优贤。纸机基重水分通用控制算法, 演与纸(台湾), 1995, 15(11), 4-12
[8] 张卫东, 孙优贤。纸机定量水分控制通用模型一模型的应用, 工业过程模型化与控制, 化学工业出版社, 1996, 107-113
博士后期间发表的学术论文

国际刊物


国际会议


国内刊物


[3] 张卫东, 孙优贤。单变量系统 Dahlin 控制器设计的新方法, 自动化学报, 录用

[4] 张卫东, 孙优贤。非自治对象的鲁棒 PID 控制, 自动化学报, 录用


[10] 张卫东, 孙优贤。多变量 PID 控制器优化设计, 上海交通大学学报, 1996, 30(s1), 204-207

[11] 张卫东, 孙优贤, 许晓鸣。非自治对象的完全干扰解耦控制, 上海交通大学学报, 录用
[13] 张卫东, 孙优贤, 许晓鸣。具有积分的反向响应过程控制, 浙江大学学报, 录用
[14] 张卫东, 孙优贤, 许晓鸣。基于模型的积分/时滞过程控制, 浙江大学学报, 录用
个人简历