职称:长聘教轨副教授
邮箱:chao.ning@sjtu.edu.cn
地址:电信群楼 2-535
招生信息
导师信息:宁超,博士生导师,国家高层次青年人才,上海市领军人才,上海市浦江人才,小米青年学者,IEEE Senior Member
研究生培养:马徐韬(国家奖学金)
汪 涵(国家奖学金)
李龙艳(小米奖学金)
教育经历
2020年8月,美国康奈尔大学(Cornell University),博士学位
2015年7月,清华大学,硕士学位
2012年7月,电子科技大学,学士学位
工作经历
2024年1月-至今,上海交通大学自动化系,长聘教规副教授
2021年2月-2023年12月,上海交通大学自动化系,助理教授
2020年8月-2021年1月,美国康奈尔大学,博士后
科研方向
科研项目
荣誉与奖励
科研成果
期刊论文
[1] Ma, X., Ning, C.*, Li, L., Qiu, H., Gu, W., and Dong, Z. (2024). Bayesian Nonparametric Two-Stage Distributionally Robust Unit Commitment Optimization: From Global Multimodality to Local Trimming-Wasserstein Ambiguity. IEEE Transactions on Power Systems, 39, 6702-6715.
[2] Li, L., Ning, C.*, Qiu, H., Du, W., Dong, Z. (2024). Online Data-Stream-Driven Distributionally Robust Optimal Energy Management for Hydrogen-Based Multi-Microgrids. IEEE Transactions on Industrial Informatics, 20, 4370-4384.
[3] Li, L., Liu, S., Ning, C.* (2024). Data-Driven Distributionally Robust Planning of Electricity-Heat-Hydrogen-Ammonia Microgrid Considering The Electrothermal-Aging Effect of SOEC. Power System Technology. (Accepted)
[4] Ning, C.*, Ma, X. (2023). Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization. IEEE Control Systems Letters, 7, 3597-3602.
[5] Ning, C., You, F. (2022). Deep Learning based Distributionally Robust Joint Chance Constrained Economic Dispatch under Wind Power Uncertainty. IEEE Transactions on Power Systems, 37, 191-203.
[6] Ning, C., You, F. (2021). Online Learning Based Risk-Averse Stochastic MPC of Constrained Linear Uncertain Systems. Automatica, 125, 109402.
[7] Ning, C., You, F. (2020). A Transformation-Proximal Bundle Algorithm for Multistage Adaptive Robust Optimization and Application to Constrained Robust Optimal Control. Automatica, 113, 108802.
[8] Ning, C., You, F. (2019). Data-Driven Adaptive Robust Unit Commitment under Wind Power Uncertainty: A Bayesian Nonparametric Approach. IEEE Transactions on Power Systems, 34, 2409-2418. (🏆 AIChE 可持续工程学生论文奖)
[9] Ning, C., You, F. (2017). Data-Driven Adaptive Nested Robust Optimization: General Modeling Framework and Efficient Computational Algorithm for Decision Making under Uncertainty. AIChE Journal, 63, 3790-3817.
[10] Ning, C., You, F. (2017). A Data-Driven Multistage Adaptive Robust Optimization Framework for Planning and Scheduling under Uncertainty. AIChE Journal, 63, 4343-4369.
[11] Ning, C., You, F. (2019). Optimization under Uncertainty in the Era of Big Data and Deep Learning: When Machine Learning Meets Mathematical Programming. Computers & Chemical Engineering, 125, 434-448. (Review Paper)
[12] Ning, C., You, F. (2019). Data-Driven Wasserstein Distributionally Robust Optimization for Biomass with Agricultural Waste-to-Energy Network Design under Uncertainty. Applied Energy, 255, 113857.
[13] Ning, C., Chen, M., Zhou, D. (2014) Hidden Markov Model-Based Statistics Pattern Analysis for Multimode Process Monitoring: An Index-Switching Scheme. Industrial & Engineering Chemistry Research, 53, 11084-11095.
[14] Ning, C., You, F. (2018). Data-Driven Stochastic Robust Optimization: General Computational Framework and Algorithm Leveraging Machine Learning for Optimization under Uncertainty in the Big Data Era. Computers & Chemical Engineering, 111, 115-133.
[15] Ning, C., You, F. (2018). Data-Driven Decision Making under Uncertainty Integrating Robust Optimization with Principal Component Analysis and Kernel Smoothing Methods. Computers & Chemical Engineering, 112, 190-210.
[16] Ning, C., You, F. (2018). Adaptive Robust Optimization with Minimax Regret Criterion: Multiobjective Optimization Framework and Computational Algorithm for Planning and Scheduling under Uncertainty. Computers & Chemical Engineering, 108, 425-447.
[17] Qiu, H., Gu, W., Ning, C., Lu, X., Liu, P., Wu, Z. (2023). Multistage Mixed-Integer Robust Optimization for Power Grid Scheduling: An Efficient Reformulation Algorithm. IEEE Transactions on Sustainable Energy, 14 (1), 254-271.
[18] Qiu, H., Wang, L., Gu, W., Pan, G., Ning, C., Wu, Z., Sun, Q. (2022). Multistage Scheduling of Regional Power Grids Against Sequential Outage and Power Uncertainties. IEEE Transactions on Smart Grid, 13 (6), 4624-4637.
[19] Deng, H., Yang, B., Ning, C., Chen, C. and Guan, X. (2023). Distributionally Robust Day-Ahead Scheduling for Power-Traffic Network under A Potential Game Framework. International Journal of Electrical Power & Energy Systems, 147, p.108851.
[20] Cao, J., Yang, B., Zhu, S., Ning, C., Guan, X. (2021). Day-ahead Chance-Constrained Energy Management of Energy Hub: A Distributionally Robust Approach. CSEE Journal of Power and Energy Systems.
[21] Gao, J., Ning, C., You, F. (2019). Data-Driven Distributionally Robust Optimization for Shale Gas Supply Chain Design and Operations under Uncertainty. AIChE Journal, 3, 947-963.
[22] Zhao, L., Ning, C., You, F. (2019). Operational Optimization of Industrial Steam Systems under Uncertainty Using Data-Driven Adaptive Robust Optimization. AIChE Journal, 65, e16500.
[23] Nicoletti, J., Ning, C., You, F. (2019). Incorporating Agricultural Waste-to-Energy Pathways into Biomass Product and Process Network through Data-Driven Nonlinear Adaptive Robust Optimization. Energy, 180, 556-571.
[24] Qiu, H., Veerasamy, V., Ning, C., Sun, Q., Gooi, H.B. (2024). Two-Stage Robust Optimization for Assessment of PV Hosting Capacity Based on Decision-Dependent Uncertainty. Journal of Modern Power Systems and Clean Energy. DOI: 10.35833/MPCE.2023.000488
会议论文
[1] Ma, X., Ning, C.*, Du, W. (2024). Differentiable Distributionally Robust Optimization Layers. International Conference on Machine Learning (ICML). (Top conference in AI, CCF-A)
[2] Wang, H., Ning, C.*, Li, L., Zhang, W. (2024). Online-Learning-Based Distributionally Robust Motion Control with Collision Avoidance for Mobile Robots. IEEE International Conference on Robotics and Automation (ICRA). (CAAI-A)
[3] Ning, C., You, F. (2019). Data-Driven Adaptive Robust Optimization Framework for Unit Commitment under Renewable Energy Generation Uncertainty. American Control Conference (ACC), 4734-4739. (🏆 美国控制会议 O. Hugo Schuck 最佳论文奖)
[4] Wang, H., Ning, C.* (2024). Online-Learning-Enabled Distributionally Robust Motion Control Via Uncertainty Propagation and Ambiguity Set Compression. 63rd IEEE Conference on Decision and Control (CDC).(Accepted).
[5] Liu, S., Li, L., Ning, C.* (2024). Optimal Planning of Multi-Energy Systems for Sustainable Ammonia Production Considering Electrothermal-Aging Effect of SOEC. IEEE 22nd International Conference on Industrial Informatics (IEEE INDIN).
[6] Li, L., Ning, C.* (2022). Integrated Power and Hydrogen Trading in Multi-microgrid Coupled with Offsite Hydrogen Refueling Stations. IEEE Conference on Energy Internet and Energy System Integration (IEEE EI2), (Accepted).
[7] Ning, C.*, Li, L. (2022). Online Learning Enabled Hierarchical Distributionally Robust Model Predictive Control of Green-Hydrogen Microgrids under Uncertainties. IEEE International Electrical and Energy Conference(CIEEC), 2366-2371. (🏆 最佳论文奖).
[8] Li, L., Ning, C.*, Qiu H. (2022). Streaming-Data-Driven Distributionally Robust Joint Operation of Multi-Microgrids and Off-Site Hydrogen Refueling Stations under Uncertainties. IEEE International Conference on Innovative Smart Grid Technologies (IEEE ISGT-Asia).
[9] Ning, C.*, Li, L. (2022). Data-Driven Robust Optimization for Energy Chemical Processes under Uncertainties: A Review and Tutorial. International Conference on Industrial Artificial Intelligence (IAI). (🏆 最佳论文奖).
[10] Li, L., Ning, C.* (2022). Event-Triggered Online Learning Assisted Distributionally Robust Energy Management of Ammonia-Based Multi-Energy Microgrids. International Conference on Industrial Artificial Intelligence (IAI) (Accepted).
[11] Ning, C., You, F. (2021). Data-Driven Ambiguous Joint Chance Constrained Economic Dispatch with Correlated Wind Power Uncertainty. American Control Conference (ACC), 1807-1812.
[12] Ning, C., You, F. (2019). A Transformation-Proximal Bundle Algorithm for Solving Multistage Adaptive Robust Optimization Problems. 57th IEEE Conference on Decision and Control (CDC), 2018, 2439-2444.
[13] Ning, C., Chen, M., Zhou, D. (2015) Sparse Contribution Plot for Fault Diagnosis of Multimodal Chemical Process. IFAC-PaperOnline, 48 (21), 619-626.
[14] Ning, C., You, F. (2018). Data-Driven Adaptive Robust Optimization Framework Based on Principal Component Analysis. American Control Conference (ACC), 3020-3025.
[15] Ning, C., You, F. (2019). Chemical Process Scheduling under Disjunctive Uncertainty Using Data-Driven Multistage Adaptive Robust Optimization. American Control Conference (ACC), 2145-2150.
[16] Ning, C., You, F. (2016). Data-Driven Robust MILP Model for Scheduling of Multipurpose Batch Processes under Uncertainty. 55th IEEE Conference on Decision and Control (CDC), 2016, 6180-6185.
[17] Ning, C., You, F. (2017). Leveraging Big Data for Adaptive Robust Optimization of Scheduling under Uncertainty. American Control Conference (ACC), 3783-3788.
发明专利
[1] 宁超,李龙艳,刘淑娴,基于多阶段分布鲁棒优化的混合电氢交通站规划方法及系统, 2025-1-6, 中国, 2025100155867 (发明专利)
[2] 宁超,李龙艳,顾峻豪,考虑混合电解槽的离网氨氢微网规划方法、系统及介质, 2024-9-26, 中国, 202411348545.1 (发明专利)
[3] 宁超,赵珺豪,汪涵,基于学习和全驱系统的PEM电解槽温度预测控制方法和设备, 2024-9-24, 中国, 202411328268.8 (发明专利)
[4] 宁超,李龙艳,刘淑娴,一种考虑SOEC电热老化效应的电-热-氢-氨耦合微网规划方法,2024-8-7,中国,202411078365.6 (发明专利)
[5] 宁超,马翱凯,马徐韬,李龙艳,一种数据驱动的电-氢综合能源系统多阶段分布鲁棒调度方法,2024-4-23,中国,2024104906930 (发明专利)
[6] 宁超,马徐韬,李龙艳,数据驱动的非参数贝叶斯分布鲁棒机组组合优化方法, 2023-10-27, 中国,2023114096969 (发明专利)
[7] 宁超,汪涵,李龙艳,一种基于在线协同学习的多机器人分布鲁棒避障控制方法, 2024-1-24, 中国,2024101027734 (发明专利)[8] 周东华,宁超,陈茂银,基于稀疏贡献图的高炉多工况故障分离方法及系统. 中国发明专利 201410418264.9
[9] 周东华,宁超,陈茂银,一种基于协方差矩阵范数逼近的多重故障重构方法. 中国发明专利 201310662933.2
[10] 周东华,宁超,陈茂银. 一种基于监控指标切换的多工况过程监控方法. 中国发明专利 201310675045.4
教授课程
AU 7032 Advanced Mathematical Optimization (英文授课)
AU 3302 Automatic Control Theory (A) (英文授课)
学术服务
1. 中国自动化学会
2. 中国可再生能源学会(氢能专委会)
3. 中国系统工程学会(过程系统工程专委会)
4. 中国电机工程学会
5. 中国电工技术学会(高级会员)
6. IEEE(高级会员)