个人简介
刘若楠,博士生导师,德国洪堡学者,中国科协青年托举人才
目前课题组经费非常充足,欢迎自动化、计算机、机械工程以及其他相关专业的同学Email简历来实验室开展本科、硕士、博士研究工作。
2024.05至今 上海交通大学 自动化系 长聘教轨副教授
2019 - 2024 天津大学 人工智能学院 长聘/英才副教授
2017 - 2019 卡耐基梅隆大学 计算机科学学院 联合培养博士/博士后研究员
2009 - 2019 西安交通大学 机械工程 本硕博连读
科研方向
机器学习
具身智能交互感知
高端装备智能运维、故障诊断与寿命预测等
科研项目
主持 国自然青年项目 小样本下动态图网络的鲁棒学习研究
主持 天津市应用基础研究项目 知识与数据联合驱动的可解释图神经网络研究
主持 CCF-百度松果基金 融合知识的图神经网络计算研究
主持 青年人才托举工程 机器学习
主持 国防基础科研计划重点项目课题 XX系统XX定位、诊断与预测
主持 自主创新基金 开放环境增量学习的分层建模方法研究
主持 自主创新基金 深海装备动力系统的多粒度故障诊断研究
参与 973项目“航空发动机运行安全基础研究”
参与 Deep Intermodal Video Analytics (DIVA) Program (Supported by IARPA via DOI/IBC Department Contract number D17PC00340)
荣誉及学术任职
德国洪堡学者
中国科协青年托举人才
全球前2%顶尖科学家(World's Top 2% Scientists)(2021年-至今连续四年)
《IEEE Transactions on Industrial Cyber-Physical Systems》、《Sustainable Energy Technologies and Assessments》、《Frontiers in Artificial Intelligence》等期刊首席客座编委/编委
IEEE工业电子学会技术委员会委员
IEEE国际工业信息学大会IEEE INDIN 2025 Publication Chair & Special Session Chair
2021年度智能感知领域排名第一、IEEE工业信息学汇刊IEEE Trans. on Industrial Informatics最佳论文奖(IF 12.3)
指导本科生获2024中国机器人大赛暨RoboCup机器人世界杯中国赛 国家一等奖
代表性论文
[28] Liu R, Zhao S, Pang Z, et al. Out-of-Distribution Fault Diagnosis of Industrial Cyber-physical Systems Based on Orthogonal Anchor Clustering with Adaptive Balance[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2024.
[27]Yu W, Liu R*, Chen D, et. al. Explainability Enhanced Object Detection Transformer with Feature Disentanglement[J]. IEEE Transactions on Image Processing, 2024.
[26] Liu R, Wu S, Kong P, et. al. Robust Object Recognition in Open Environments Based on Causal Inference[C]. International Conference on Robotics, Control and Automation Engineering (RCAE), 2024. (Best Paper Award)
[25]Wang L, Lin D, Yang K, Liu R*, Guo Q, et. al. Voxel Proposal Network via Multi-Frame Knowledge Distillation for Semantic Scene Completion[C]. Neural Information Processing Systems (NeurIPS), 2024.
[24] Liu R, Xie Y, Lin D*, et. al. Information-based Gradient Enhanced Causal Learning Graph Neural Network for Fault Diagnosis of Complex Industrial Processes[J]. Reliability Engineering & System Safety, 2024.
[23]Zhang X, Hu Z, Liu R, et al. Fault Detection of Unmanned Surface Vehicles: The Fuzzy Multi-Processor Implementation[J]. IEEE Transactions on Fuzzy Systems, 2024.
[22] Liu R, Kong P, Zhang W. Multiple Visual Features in Topological Map for Vision-and-Language Navigation[C]. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024). (Oral)
[21]Jin C, Yang B, Liu R. Improved VLN-BERT with Reinforcing Endpoint Alignment for Vision-and-Language Navigation[C]. International Joint Conference on Artificial Intelligence (IJCAI 2024). (Runner-up Paper Award)
[20] Liu R, Kong P, Wu S, Zhang W. RewardVLN: An Improved Agent Navigation Based on Visual-Instruction Alignment[C]. The IEEE International Conference on Advanced Robotics and Mechatronics (IEEE ICARM 2024). (Best Paper Award Finalist)
[19] Liu R, Zhang Q, Lin D*, et al. Causal Disentangled Graph Neural Network for Fault Diagnosis of Complex Industrial Process[J]. IEEE Transactions on Industrial Informatics, 2024.
[18] Liu R, Zhang Q, Han T*, et al. Survey on Foundation Models for Prognostics and Health Management in Industrial Cyber-Physical Systems[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2024.
[17] Liu R, Zhang Q, Lin D*, et al. Causal intervention graph neural network for fault diagnosis of complex industrial processes[J]. Reliability Engineering & System Safety, 2024.
[16]Cheng P, Ye S, Liu R, et al. SMC-Based Bounded Consensus Tracking for Multiagent Systems Under Stochastic DoS Attacks With Applications to Multiple DC Motors[J]. IEEE Transactions on Industrial Informatics, 2024.
[15] Liu R, Xiao D, Lin D*, et al. Intelligent Bearing Anomaly Detection for Industrial Internet of Things Based on Auto-Encoder Wasserstein Generative Adversarial Network[J]. IEEE Internet of Things Journal, 2024.
[14] Liu R, Zhang Q, Wang Y*, et al. Industrial Big Data Analytical System in Industrial Cyber-Physical Systems Based on Coarse-to-Fine Deep Network[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2023.
[13] Wang H, Liu R*, Ding S X, et al. Causal-Trivial Attention Graph Neural Network for Fault Diagnosis of Complex Industrial Processes[J]. IEEE Transactions on Industrial Informatics, 2023.
[12] Lin D, Wang X, Shen J, Zhang R, Liu R, et al. Generative Status Estimation and Information Decoupling for Image Rain Removal[C] //Advances in Neural Information Processing Systems (NeurIPS 2022).
[11] Chen D, Liu R*, Hu Q, et al. Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. (ESI, Hot Paper) [link]
[10] Chen H, Liu R*, Xie Z, et al. Majorities Help Minorities: Hierarchical Structure Guided Transfer Learning for Few-shot Fault Recognition[J]. Pattern Recognition, 2021: 108383[link]
[9] Hu Y, Liu R*, Li X, et al. Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis with Limited Data[J]. IEEE Transactions on Industrial Informatics, 2021. (ESI) [link]
[8]Wang Y, Liu R*, Lin D, et al, Coarse-to-Fine: Progressive Knowledge Transfer Based Multi-Task Convolutional Neural Network for Intelligent Large-Scale Fault Diagnosis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. [link]
[7] Wang F, Liu R*, Hu Q, et al. Cascade convolutional neural network with progressive optimization for motor fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2511-2521[link]
[6] Liu R, Wang F, Yang B*, et al. Multi-scale Kernel based Residual Convolutional Neural Network for Motor Fault Diagnosis Under Non-stationary Conditions[J]. IEEE Transactions on Industrial Informatics, 2019. (ESI) [link]
[5] Yang B, Liu R*, Zio E. Remaining useful life prediction based on a double-convolutional neural network architecture[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9521-9530. (ESI) [link]
[4]Liu R, Yang B*, Hauptmann A G. Simultaneous Bearing Fault Recognition and Remaining Useful Life Prediction Using Joint-Loss Convolutional Neural Network[J]. IEEE Transactions on Industrial Informatics, 2019, 16(1): 87-96. (ESI, 2021 Outstanding Paper Award in IEEE TII)[link]
[3] Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. (ESI, Hot Paper) [link]
[2] Liu R, Meng G, Yang B, et al. Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine[J]. IEEE Transactions on Industrial Informatics, 2016, 13(3): 1310-1320. (ESI) [link]
[1] Liu R, Yang B, Zhang X, et al. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 75: 345-370. (ESI)[link]